Algorithmic information, plane Kakeya sets, and conditional dimension

Neil Lutz
Rutgers University
3/9/2016 at 11:00 am
Core A (Room 301)

Abstract

We formulate the conditional Kolmogorov complexity of x given y at precision r, where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways.

1. We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E. We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2.

2. We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions $\dim(xy)$ and $\Dim(xy)$ of x given y, where x and y are points in Euclidean spaces. Intuitively these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y. We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well studied dimensions $\dim(x)$ and $\Dim(x)$ and mutual dimensions $\mdim(x:y)$ and $\Mdim(x:y)$.

Joint work with Jack Lutz.

Organizer(s): Eric Allender, Pranjal Awasthi, Michael Saks and Mario Szegedy