Spatial Views: Space-Aware Programming for
Networks of Embedded Systems *

Yang Ni, Ulrich Kremer, and Liviu Iftode

Department of Computer Science
Rutgers University
Piscataway, NJ 08854
{yangni, uli, iftode}@cs.rutgers.edu

Abstract. Networks of embedded systems, in the form of cell phones,
PDAs, wearable computers, and sensors connected through wireless net-
working technology, are emerging as an important computing platform.
The ubiquitous nature of such a platform promises exciting applications.
This paper presents a new programming model for a network of embed-
ded systems, called Spatial Views, targeting its dynamic, space-sensitive
and resource-restrained characteristics. The core of the proposed model
is iterative programming over a dynamic collection of nodes identified
by the physical spaces they are in and the services they provide. Hid-
den in the iteration is execution migration as the main collaboration
paradigm, constrained by user specified limits on resource usage such as
response time and energy consumption. A Spatial Views prototype has
been implemented, and first results are reported.

1 Introduction

The possibility of building massive networks of embedded systems (NES)
has become a reality. For instance, cell phones, PDA’s, and other gadgets
carried by passengers on a train can form an ad hoc network through
wireless connection. In addition to those volatile and dynamic nodes,
the network may contain fixed nodes installed on the train, for instance
public displays, keyboards, sensors, or Internet connections. Similar net-
works can be established across buildings, airports or even on highways
among car-mounted computers. Any device with a processor, some mem-
ory and a network connection, probably integrated on a single chip, can
join such a network. The application of such a network is limited only by
our imagination, if we had the right programming models and abstrac-
tions.

Existing programming models do not address key issues for applications

that will run on a network of embedded systems.

Physical Locations: An application has a physical target space region,
i.e., a space of interest in which it executes. The semantics of a pro-
gram executing outside its target space in not defined. For instance,
it makes a difference if an application collects temperature reading

* This research was partially supported by NSF ITR/SI award ANI-0121416.

within a building or outside a building, and whether all or only a sub-
set of temperature sensors are to be polled. A motion sensor reading
may trigger the activation of other sensors but only of those which
are in the spatial proximity of the motion sensor. A programmer
must be able to specify physical spaces and location constraints over
these spaces.

Volatile and Dynamic Networks: Nodes may join and leave at any
time, because of movements or failure. Portable devices or sensors,
carried by a person or an animal[17], may go out the space of inter-
est while they are moving with the carriers. Battery powered small
devices may go out of power at any point. A node available at time
t can not be assumed available at time ¢t + At or time ¢ — At, where
At can be very small relative to the application execution time.

Resource Constraints: Resources like energy and execution time are
limited in a network of embedded systems, due to the hardware
form factor and application characteristics. Graceful degradation of
quality of results is necessary in such an environment. Instead of
draining the battery of the sensors, you might want to limit the total
energy used by a program and accept a slightly worse answer. Or
you may limit the response time of a query for traffic information
10 miles ahead on the highway, so you will have enough time to
choose a detour after getting the answer. In those cases, energy-
wasting or late answers are not better or even worse than no answer.
Programmers should be able to specify the amount of resource used
during a program execution, so trade-offs between quality of results
and resource usage can be made.

In this paper, we introduce Spatial Views, a novel programming model
targeting networks of embedded systems. Spaces, services and resource
constraints are explicit programming elements in Spatial Views. Spaces
and services are combined to define dynamic collections of interesting
nodes in a network, called Spatial Views. Iterators and Selectors specify
code to execute in a view under a specified time constraint, and possibly
additional user specified resource constraints. These high level program
constructs are based on a migratory execution model, guided by the
space and service of interest. However, Spatial Views does not exclude
an implementation using other communication mechanisms, such as re-
mote procedure calls, message passing or even socket programming, for
performance or energy efficiencies.

Network or node failures are transparent to the programming model.

However, there is no guarantee that the execution of an application will

be able to complete successfully. Our proposed model is not fault tolerant,

but allows answers of different qualities. In contrast, in a traditional
programming model for a stable target system, any answer is considered
to have perfect quality. In our programming model, it is the responsibility

of the programmer to assess the quality of an answer. For example, if a

user wants the average temperature calculated from readings of at least

ten network nodes, he or she should report the average temperature
together with the number of actually visited nodes to assess the quality
of the answer. A best-effort compiler and run-time system will try to
visit as many nodes as possible, as long as no user defined constraint is

violated, assuming that visiting more nodes will produce a potentially
better answer. A target space and a time constraint have to be specified
for each program to confine its execution, including node discovery, to a
space X time interval.

Security and privacy issues are also important in a NES but are not
currently part of our programming model. The same application will
run on a secure network as well as on a insecure network. We assume
that security-sensitive hosts will implement authentication and protec-
tion policies at a lower level than the programming model.

Smart Messages[4] and Spatial Programming[13] are possible implemen-
tation platforms for our proposed Spatial Views programming model.
A programming environment for execution migration that includes pro-
tection and encryption for Smart Messages is currently under investiga-
tion[25], which could be used as an secure infrastructure to implement
our programming model. However, in this paper we describe an imple-
mentation of Spatial Views on top of Sun’s K Virtual Machine (KVM)
independent of Smart Messages.

In the rest of this paper, we will present a survey of related works (section
2), the programming model (section 3), a discussion of the implementa-
tion of a prototype system (section 4) and experimental results (section
5).

2 Related Work

Our work is correlated to recent work on sensor networks[12, 20, 6, 16, 19]
in that they all target ad hoc networks of wireless devices with limited
resources. However, we broaden the spectrum of network nodes to in-
clude more computing powerful devices like PDA’s, cell phones and even
workstations or servers.

TinyOS[12] and nesC[6] provide a component-based event-driven pro-
gramming environment for Motes. Motes are small wireless computing
devices that have processors of a couple of MHz, about 4KB RAM and
10Kbps wireless communication capability. TinyOS and nesC use Active
Messages as the communication paradigm. Active Messages has a simi-
lar flavor to execution migration of Spatial Views, but use non-migrating
handlers instead of migrating code. Maté[20] is a tiny virtual machine
built on top of TinyOS for sensor networks. It allows capsules, i.e. Maté
programs, in bytecode to forward themselves through a network with a
single instruction, which bears the resemblance to execution migration in
Spatial Views. Self forwarding enables on-line software upgrading, which
is important in large-scale sensor networks.

Next, we are going to discuss related work about services and locations.
We will also discuss related work about execution migration, which is
used in the implementation of the prototype for our programming model.

2.1 Service Discovery

Service discovery is a research area with a long history. Service is usu-
ally specified either as an interface (like in Jini,)[24] or as a tuple of

attribute-and-value pairs (like in INS.)[2] Attribute-and-value pairs de-
scribe a hierarchical service space by adding new attributes and corre-
sponding values in a describing tuple. The same goal can be achieved
through interface sub-typing.

Spatial Views programming model specify services as interfaces. Applica-
tions and services agree on the semantics of the methods of the services.
We assume that the operating system provides service discovery as a
basic function. However, we did implement a simple service discovery in
the Spatial Views runtime libraries using the random walk technique.

2.2 Location Technology

GPS[7] is the most developed positioning technology. It is all-weather
world-wide available with very high accuracy regarding its scale, 16 me-
ters for absolute positions and 1 meter for relative positions. In spite of
its many advantages, GPS is only available outdoor and its accuracy is
still not satisfactory for many mobile computing applications. In recent
years, more accurate in-door positioning technologies have been devel-
oped by the mobile computing community. Active Badges and Bats[1, 11,
10] are tracking systems as accurate as to a few centimeters. Each object
is attached a RFID and tracked by a centralized system. Although accu-
rate, Active Badges and Bats are costly and hard to deploy. User privacy
is not protected since everyone with a tag exposes his/her position by
sending out radio signals. The central machine in charge of analyzing
each user’s position causes scalability problem and represents a single
point of failure. Cricket[22,21] tries to address those issues by using a
distributed and passive architecture similar to GPS. Cricket is based on
special beacons and receivers and uses time of fly of radio and ultrasound
signals to locate. It provides a precision to a few meters. RADARJ[3] is
also a passive system like GPS, but it is based on the popular 802.11
technology and uses radio signal strength to locate. The precision of
RADAR is in the range of 2 or 3 meters.

2.3 Migratory Execution

Spatial Views is part of the Smart Messages project[5, 4]. The goal of
Spatial Views is to build a high-level space-aware programming language
over Smart Messages. We had a simple implementation of the migratory
execution feature of Smart Messages for rapid prototyping and evaluation
of Spatial Views.

Migratory execution has been extensively studied in the literature, espe-
cially in the context of mobile agents[9, 8]. However, Spatial Views only
supports implicit transparent migration hidden in its iteration opera-
tion, and names a node based on the services that it provides. Spatial
Views/Smart Messages is different from mobile agents in terms of the
design goal. We are designing a programming tool and infrastructure for
cooperative computing on networks of embedded systems. The major
network connection is assumed wireless. Spatial Views/Smart Messages
uses content naming, and a migrating program is responsible for its own
routing.

3 Programming Model

To program a network of embedded system in Spatial Views, a program-
mer specifies the nodes in which he or she is interested based on the
properties of the nodes. Then he or she specifies the task to be executed
on those nodes. The properties used to identify interesting nodes include
the services of the nodes and their locations.

A program starts running on one node. Whenever it needs some services
which the current node does not provide, it discovers another node that
does, and migrates there to continue its execution.

Spatial Views provides necessary programming abstractions and con-
structs for this novel programming model. Node discovery, ad hoc net-
work routing, and execution migration are transparently implemented
by the compiler, runtime system, and the operating system. A program-
mer is freed from dealing directly with the dynamic network. Figure 1
shows an example of Spatial Views program. We will walk through this
example in Section 3.3.

3.1 Services and Virtual Nodes

NES computing is cooperative computing[5]. Nodes participate in a com-
mon computing task by providing some service and using services pro-
vided by other nodes at the same time. A service is described or named
with an interface in Spatial Views. Nodes provide services which are
discovered at run-time, and are provided as objects implementing cer-
tain interfaces. In our programming model, discovery is assumed a basic
function provided by the underlying middleware or OS. But we provide a
simple discovery implementation based on the “random walk” technique
in Section 4. The discovery procedure looks for nodes hosting classes im-
plementing the interface. When such a node is found, an object of the
class is created. The program is then able to use the service through the
object. The discovery may be confined to certain physical space as we
will discuss in Section 3.2.

The basic programming abstraction in Spatial Views is a wvirtual node,
which is denoted as a pair (service, location), representing a physical
node providing the service and locating in the location. Concrete phys-
ical nodes with TP addresses or MAC addresses are replaced by virtual
nodes. Depending on how many services it provides, a single physical
node may be represented by multiple virtual nodes. More interestingly,
if a physical node is mobile, it may be used as different virtual nodes at
different points during the application execution. Uniquely identifying a
particular physical node is not supported in Spatial Views. In case that
an application needs to do so, the programmer can use some application-
specific mechanism, for example, using MAC addresses.

3.2 Spatial Views, Iterators and Selectors

A spatial view is a dynamic collections of virtual nodes that provide a
common service and locate in a common space. Here a space is a set of

locations, which can be a room, a floor, or a parking lot. Iterators and
selectors describe actions to be performed over the nodes in a view. The
instructions specified in the body of an iterator are executed on “all” or
as many nodes as possible of the view. In contrast, the body of a selector
is executed on only one node in the view if the view is not empty.

The most important characteristics of a spatial view is its dynamic na-
ture. It is a changing set of virtual nodes. A physical node may move
out, or run out of power. So a virtual node may just disappear at an
arbitrary point. On the other hand, new nodes may join at any time.
For this reason, two consecutive invocations of the same iterator over
the same view may lead to different results.

A spatial view is defined as follows:

Spatial ViewDefinition —
SpatialView SV_id = new SpatialView(Service , Spaceopt)

where Service is the name of an interface and Space is the space of in-
terest. If the space is omitted, any node providing the interesting service
would be included in the view no matter where it is.

A spatial view is accessed through an iterator or selector.

Iterator —

foreach node_id in SV_id do TimeConstraint Constraint Listop:
Statement

Selector —

forany node_id in SV_id do TimeConstraint Constraint Listop:
Statement

TimeConstraint —

within NumberOfMilliseconds

TimeConstraint gives a time constraint, which is mandatory. ConstraintList
gives a list of constraints on energy, monetary or other resources to ap-
ply to an iterator or a selector. At this point, only time constraints are
supported.

A time constraint demands an iterator or selector finish in NumberOfMil-
liseconds. Time constraints are enforced following a best-effort semantics
with the iteration body as the minimal atomic unit of constraint control.
This means an iteration will never be partially executed even when a
time constraint is violated. A time constraint in Spatial Views is a soft
deadline, and is a time budget rather than a real-time deadline. In other
words, the time constraint does not ensure that a program terminates
successfully within the deadline, but ensures no further execution after
the budget is exhausted.

3.3 Example

The example shown in Figure 1 illustrates a Spatial Views application
that executes on a network that contains nodes with cameras and nodes

0: // Import space definitions.

1:
2
3
4
5:
6:
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34: }

import SpaceDefinition.Rutgers.x;

: public class SVExample {
public static void main(String args[]l) {

// Define a Spatial View of cameras on the 3rd floor of the CoRE building
SpatialView cameraView = new SpatialView("Camera", BuschCampus.CoRE.3rdFloor);
Location loc;
// Iterate over camera view in 30 seconds
foreach camera in cameraView do within 30000 {
Picture pic = camera.getPicture();
Rectangle redRegion = pic.findRegionInColor(Color.Red);
if (redRegion != null) {
// Define a Spatial View of face detection services. The default space is anywhere.
SpatialView detectorView = new SpatialView("FaceDetector");
Rectangle face;

// select a detector and finish face detection in 10 seconds
forany detector in detectorView do within 10000
face = detector.detectFaceInPicture(pic);
// Check if the the red region is close to the face so that we can think it is a person in red

if (face != null & face.isCloseTo(redRegion))
loc = camera.getLocation();

}
if (loc!=null)
System.out.println("A person in red is found at " + loc)

else
System.out.println("No one in red is found.");

Fig. 1. Spatial Views example application of locating a person in red

that provide image processing services such as human face detection[23].
The program tries to find a person with a red shirt or sweater on the
third floor of a building. An answer is expected back within 30 seconds
(soft deadline). A time limit is necessary because the computed answer
may become “stale” if returned too late (the missing person may have
left the building at the time the successful search result is reported).

Static physical spaces such as buildings and floors within buildings may
be defined as part of a Spatial Views space library. In the example,
we assume that the package “SpaceDefinition.Rutgers.*” contains such
definitions for the Rutgers University campuses.

Line 6 defines a spatial view of cameras on the third floor of a building
named CoRE (a building at Rutgers University.) Lines 10-27 define the
task to be performed on the cameras in the spatial view defined in line 6.
It is an iterator, so the task will be executed on each camera discovered
within the time constraint, 30 seconds as defined in line 10. When the
execution reaches Line 11, the program would have migrated to a camera.
Then a picture is taken. Line 12 tries to find a region in the picture that is
mostly red. If such a red region is found, another spatial view consisting
of face detectors is defined (Line 16.) Lines 20 and 21 use a face detector
in the view defined in Line 16 to find a face in the picture. (Because it
is a selector, line 20 and 21 finishes right after the first face detector is
discovered.) If the face detected is close to the red region in the picture,
the program concludes it is a person in a red shirt, and remember the
location of the camera which takes the picture. This location is reported
at the end of the program (Lines 29-32.)

4 Implementation

The implementation itself is not the major contribution of this paper.
The programming model is. The purpose of this implementation is to
justify the programming model, and to provide an opportunity to study
the abstractions and constructs proposed in the model. It is part of our
on-going work to make this implementation faster, scalable, secure and
economic acceptable. However, the current implementation has shown
the feasibility of our programming model.

Our prototype is an extension to Java 2 Platform, Micro Edition (J2ME)[14].
Figure 2 shows the basic structure of the Spatial Views compilation sys-
tem. We are currently investigating optimization passes that improve
the chances of a successful program execution in a highly volatile target
network. The compiled bytecode runs on a network, each node of which
has a Spatial Views virtual machine and a Spatial Views runtime library.
Figure 3 shows the architecture of a single node.

Optimization Pass

Spatial Views Compiler

Spatial Views Program (Modified javac)

Java Bytecode

Fig. 2. Compilation of Spatial Views Programs

Applications

Spatial Views Library

Spatial Views KVM

OS/Hardware

l

Fig. 3. Architecture of a Node

We build the Spatial Views compiler, virtual machine and runtime li-
brary based on Sun’s J2ME technology[14]. J2ME is a Java runtime en-
vironment targeting extremely tiny commodities. KVM][15] is a key part
of J2ME. It is a virtual machine designed for small-memory, limited-
resource and networked devices like cell phones, which typically contain
16- or 32-bit processors and a minimum memory of about 128 kilobytes.
We modified javac in Java 2 SDK 1.3.1 to support the new Spatial
Views language structures, including the foreach and forany statement

and space definition statements. We modified the KVM 1.0.3 to support
transparent process migration. And we extended CLDC 1.0.3 with new
system classes to support Spatial Views language features. We ported
our implementation to x86 and ARM architectures, running Linux 2.4.x.

4.1 Spatial Views Iteration and Selection

At the beginning of an iteration, a new thread is created to discover in-
teresting nodes and to migrate the process there. We call the new thread
Bus Thread. The Bus Thread implements a certain discovery/routing
algorithm and respects the user-specified constraints.

The Bus Thread migrates from one interesting node to another. An in-
teresting node is a node that provides the service and is located in the
space specified in the spatial view definition. On such a node, the Bus
Thread blocks and switches to the user task thread, the code of which
is specified in the iteration body. When an iteration step finishes, the
user task thread blocks and switches back to the Bus Thread. The Bus
Thread continues until no more interesting nodes can be found or the
time budget is used out. In the case of selectors, the Bus Thread finishes
right after the first interesting nodes is found. When the Bus Thread
finishes, the corresponding spatial views iteration ends. The Bus Thread
is like a bus carrying passengers (user task threads in our case), run-
ning across a region and stopping at certain interesting places, hence the
name.

This implementation with a Bus Thread provides a simple framework
to iterate a spatial view as a dynamic set of interesting nodes. Node
discovery is transparent to the programmer and performed by the un-
derlying middleware or by the OS using existing or customized discovery
and routing algorithms.

Such a framework does not limit the search algorithm a program uses
to discover an interesting node. In the current implementation, we use
“random walk” technique, which randomly picks a neighbor of the cur-
rent node and migrates there. On each node the bus thread checks for
the service and location. If the interesting service is found in the specified
space, it switches to user task. The Bus Thread remembers the nodes
that it has visited by recording their ID’s (e.g. IP addresses and port
numbers) and avoid visiting them again.

Such an algorithm may be slow and not scalable, but one can hardly
do better in an unstructured, dynamic network. However, if the network
is not changing very fast or not changing at all, a static directory of
services can be maintained to find interesting nodes. Another possible
improvement is to allow the Bus Thread to clone itself and search the
network in parallel. This optimization is currently under investigation.
As to the constraints, so far we have implemented the time constraint.
The Bus Thread times each single iteration step, and checks the re-
mained time budget after each single iteration step finishes. If the bud-
get drops below zero, the iteration is stopped. So the time constraint
is a soft deadline implemented with “best-effort” semantics. This soft
deadline provides effective trade-offs between quality-of-results and time
consumption as shown in section 5.3.

10

4.2 Transparent Process Migration

Transparent process migration is implemented as a native method, migrate,
in a Spatial Views system class. It is used in the implementation of
foreach and forany operations. migrate takes the destination node ad-
dress as its parameter. When migrate is called, the Spatial Views KVM
sends the whole heap to the destination, as well as the virtual machine
status, including the thread queue, instruction counter, the execution
stack pointer and other information.

The KVM running on the destination node receives the heap contents
and the KVM status and starts a new process. Instead of ordinary process
initialization, the receiving KVM populates its heap with the contents
received from the network and adjusts its registers and data structures
with the KVM status received from the network. To make migrate more
efficient, we enforce a garbage collection before each migration.

5 Experiments

We used 10 Compaq iPAQ PDA’s (Model H3700 and H3800) as our test
bed, 2 of which are equipped with camera sleeves developed as part of
the Mercury project at HP Cambridge Research Laboratory (CRL) (Fig-
ure 4(a)). The iPAQ’s were connected via 802.11b wireless technology.
Since we had not implemented a location service based on GPS or other
location technology, all node locations were statically configured in these
experiments.

5.1 Application Example

We implemented the person search application discussed in Section 3.3.
We timed the execution of the application on 10 iPAQ PDA’s connected
by a 802.11b wireless network. The network topology is shown in Figure
4(b). !

Node “i” and “j” have cameras, shown as dark gray pentagons in the
figure; node “b”, ”c”, and “f” provide the face detection service, shown
as light gray triangles in the figure. The program starts from node “a”
and eventually visits all the nodes in the network in the depth-first order.
Once it finds a node with a camera, it takes a picture and checks if there
is a red region in the picture. If there is, the program will look for a
node providing face detection service. It stops on the first node with the
service and looks for a face in the picture. If a face is found, and it is
close to the red region in the picture, the program records the location
where the picture is taken. Once the program finishes all the nodes, it
migrates back to the starting node.

We experimented with two situations. Situation 1: A red region is de-
tected on both node “i” and “j”, but a face is found only in the picture

! In this paper, “network topology” refers to the network topology observed by one
program execution. Another execution is very likely to observe a different topology,
because the network is changing.

- o

Face Detector

(a) Mercury Backpaq (b) Network of the Application Example

Fig. 4.

from node “j”. Situation 2: No red region is detected on either node
“i” or 4”7, so no face detection is triggered. We timed the executions in
both situations. The program took on average 23.1 seconds in situation
1 and 10.0 seconds in situation 2. In both cases, the time constraint was
not violated. It is important to note that all the iPAQ’s use SA-1100
StrongARM processors running at 206MHz. But the nodes that provide
face detection service offload the face detection computation to a PC.
The execution times for the first situation was dramatically reduced as

suggested in [18].

5.2 Omne-Hop Migration Time

To assess the efficiency of execution migration, we measured the one-hop
migration time. We measured the overall execution time of two consec-
utive migrations, one migrating to a neighbor, followed by another one
migrating back. The time taken by those two consecutive migrations is
the round-trip time for one-hop migration, which is twice the migration
time. We measured the time for different live data size (The heap size is
128KB, but only live data are transfered.) The result is shown in Figure
5 using a wired (100Mbps Ethernet) and a wireless (11Mbps 802.11b)
connection.

In the KVM heap, there is a permanent space which is not garbage
collectible. For our test program, the size of the permanent space is
65KB (66560 bytes). The contents of the permanent space include Java
system classes, which are available on all the nodes, and strings, most
of which are used only once in a program. The current implementation
transfers the entire permanent space in a migration operation. We are
making efforts to avoid this, which we expect would significantly speed
up migration.

11

12

One-hop Migration Time
T T T T T T

T T T
802.11b ——
100Mbps Ethernet — >& -

@

&

g
T

@
g
8

T

Migration Time (milliseconds)
N
S
g 2
T T
|

H
&
g
T
1

S VRS g mmmm e B -mm-- X|

X
I | 1 1 1 1 1 1 1 1 1
65000 70000 75000 80000 85000 90000 95000 100000 105000 110000 115000 120000
Payload (Live Data) Size (bytes)

Fig. 5. One-Hop Migration Time

orscrsor 000050 AT

(a) (b)

Fig. 6. Topologies for Experiment on Timeout Constraint

5.3 Effects of Timeout Constraints

To evaluate the effects of timeout constraints, we fake failures with cer-
tain probabilities for the network links. The test program iterates over
“temperatures sensors” and reads the temperatures to calculate the av-
erage temperature. After finishing on each node, the program tries to
connect to a neighbor. If none of the neighbors is reachable, the program
waits for 10ms and tries again. And it keeps trying until it successfully
migrates to a neighbor.

If the network link failure probability is high, the iteration time might be
very long. In that case, the timeout constraints can significantly reduce
the iteration time and still get some result. We did the experiments
with two different topologies shown in Figure 6(a) and 6(b), with the
experimental results shown in Figure 7.

The time to wait before a successful migration is 10ms X ﬁ, where
p is the probability that all the links of a node to its neighbors fail.
In Topology (a), p = pi, where p; is the failure probability of a single
link. In Topology (b), p = p?. Then the time of a single iteration step is
10ms x 1% + 400ms, where 400ms is the maximum one-hop migration
time(see Figure 5).

If no time constraint is imposed, the expected execution time is (n—1) x
10ms x ﬁ + (n — 1) x 400ms, where n is the number of nodes visited.
We omit the task execution time on each node, because the temperature

Iteration Time (milliseconds)

Number of Nodes Visited

13

teration Time w/ and w/o Timeout Iteration Time w/ and w/o Timeout

5000
wio timebut (Bezie) L—— 1 T T T T T T T T T T
11000 [~ w/ timeout (Bezier) —— — -
wiotmeout +
witimeout X
timeout(2200ms) — - —

12000

wio timeout (Bezier)

4500 [~ w/ timeout (Bezier) ———~ N
wio timeout 4
4000 b= witimeout X .
timeout(1200ms) —-—

10000
9000
8000 3500
7000
3000
6000

5000 2500

Iteration Time (miliseconds)

4000 2000

3000

T T T 17 T T 177

1500

|
|
|
|
|
|
'3

2000 = e
1000 | | | 1000>
60 65 70 75 0 100 65 70 75 80 85 90 95 100
Network Link Failure Probability (%) Network Link Failure Probability(9)
(a) Iteration Time on Topology (a) (b) Iteration Time on Topology (b)
9 T T T T T T T T ° T T T T T T T T
N - B i
N _ o i
7 =
6 — % 4= -
>
ot 4 3
Sa3p —
o+ 4 3
3 - § 2 -
2 - L |
. i
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
e B R T
Network Link Failure Probability (%) Network Link Failure Probability (%)
(¢) Number of Nodes Visited with Time- (d) Number of Nodes Visited with Time-
out Constraint (Topology (a)) out Constraint (Topology (b))

Fig. 7. Effects of Timeout

reading is so fast that the time it takes is much less than migration and
waiting time.

If a timeout tiimeout iS specified, the expected program execution time
will be < tiimeout + 10ms X 1T1p + 400ms. For Topology (a), link failure
probability p;=98% and tiimeout =2200ms, that upper bound is 3100ms
, which is verified by the experimental result, 3095ms (see Figure 7(a)).
For Topology (b), pi=98%, and ttimeout=1200ms, that upper bound is
1850ms. which is also verified by the experimental result, 1802ms (see
Figure 7(b)).

Using time constraints, a programmer is able to keep a decent quality
of result of the program, while significantly reducing the execution time.
Instead of producing no answer (as it happens when a user presses “Ctrl-
C” in a traditional programming environment,) the program reports a
result of reduced quality (e.g. only two temperature readings.) when the
time budget is used out. The number of nodes visited in our experiments,
as the criterion for quality of result, is shown in Figure 7(c) and 7(d).

14

6 Conclusion

Spatial Views is a programming model that allows the specification of
programs to be executed on dynamic and resource-limited networks of
embedded systems. In such environments, the physical location of nodes
is crucial. Spatial Views allows a user to specify a virtual network based
on common node characteristics and location. Nodes in such a virtual
network can be visited using an iterator or selector. Execution migration,
node discovery, or routing is done transparently. Time and other resource
constraints allow the programmer to express quality of result trade-offs
and to manage the inherent volatility of the underlying network.

The Spatial Views programming model is simple and expressive. A pro-
totype of Spatial Views including a compiler, a runtime library and a
virtual machine, has been implemented as an extension to J2ME. Ex-
perimental results on a network of up to 10 iPAQ’s handheld computers
running Linux are very encouraging for a person search application. In
addition, the effectiveness of time constraints to allow graceful degrada-
tion of the quality of a program’s answer was experimentally evaluated
for a temperature sensor network with two different network topologies.
Spatial Views is the first spatial programming models with a best-effort
semantics. The model allows optimization such as parallelization (mul-
tiple threads), and quality of result vs. resources usage trade-offs.

References

1. Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete
Steggles, Andy Ward, and Andy Hopper. Implementing a sentient
computing system. IEEE Computer, August 2001.

2. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The
design and implementation of an intentional naming system. In
SOSP, 1999.

3. Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An in-
building RF-based user location and tracking system. In INFOCOM
(2), 2000.

4. Cristian Borcea, Chalermek Intanagonwiwat, Akhilesh Saxena, and
Liviu Iftode. Self-routing in pervasive computing environments using
smart messages. In the First IEEE Annual Conference on Pervasive
Computing and Communications (PerCom), 2003.

5. Cristian Borcea, Deepa Iyer, Porlin Kang, Akhilesh Saxena, and
Liviu Iftode. Cooperative computing for distributed embedded sys-
tems. In Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems (ICDCS), July 2002.

6. David Gay, Phil Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC language: A holistic approach to net-
worked embedded systems. In PLDI, 2003.

7. Ivan A. Getting. The global positioning system. IEEE Spectrum,
December 1993.

8. Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent sys-
tem. PhD thesis, Dartmouth College, June 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peter-

son, and Daniela Rus. D’agents: Applications and performance of a
mobile-agent system. Software: Practice and Ezxperience, May 2002.
Andy Harter and Andy Hopper. A distributed location system for
the active office. IEEE Network, 8(1), 1994.

Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul
Webster. The anatomy of a context-aware application. In MobiCom,
1999.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. System architecture directions for network sen-
sors. In ASPLOS, 2000.

L. Iftode, C. Borcea, D. Iyer, P. Kang, U. Kremer, and A. Saxena.
Spatial programming with Smart Messages for networks of embedded
systems. Technical Report DCS-TR-490, Department of Computer
Science, Rutgers University, May 2002.

Sun Microsystems Inc. Java 2 platform, micro edition (j2me).
http://java.sun.com/j2me.

Sun Microsystems Inc. KVM White Paper. Sun Microsystems, Inc.,
May 2000.

Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin.
Directed diffusion: A scalable and robust communication paradigm
for sensor networks. In MobiCom, 2000.

Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-
Shiuan Peh, and Daniel Rubenstein. Energy-efficient computing for
wildlife tracking: Design tradeoffs and early experiences with Ze-
braNet. In ASPLOS, 2002.

U. Kremer, J. Hicks, and J. Rehg. A compilation frame work for
power and energy management on mobile computers. In Interna-
tional Workshop on Languages and Compilers for Parallel Comput-
ing (LCPC’01), August 2001.

Joanna Kulik, Wendi Rabiner, and Hari Balakrishnan. Adaptive
protocols for information dissemination in wireless sensor networks.
In MobiCom, 1999.

Philip Levis and David Culler. Maté: A tiny virtual machine for
sensor networks. In ASPLOS, 2002.

Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan.
The cricket location-support system. In MobiCom, 2000.

Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, and
Seth J. Teller. The cricket compass for context-aware mobile appli-
cations. In MobiCom, 2001.

H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face
detection. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 20:23-38, 1998.

Jim Waldo. The Jini architecture for network-centric computing.
ACM Communications, July 1999.

Gang Xu, Cristian Borcea, and Liviu Iftode. Toward a security archi-
tecture for smart messages: Challenges, solutions, and open issues.
In Proceedings of the First International Workshop on Mobile Dis-
tributed Computing, May 2003.

15

