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Abstract

Loop tiling is an effective optimizing transformation to boost the mem-

ory performance of a program, especially for dense matrix scientific com-

putations. The magnitude and stability of the achieved performance im-

provements are heavily dependent on the appropriate selection of tile sizes.

Many existing tile selection algorithms try to find tile sizes which elim-

inate self-interference cache conflict misses, maximize cache utilization,

and minimize cross-interference cache conflict misses. These techniques

depend heavily on the actual layout of the arrays in memory. Array

padding, an effective data layout optimization technique, is therefore in-

corporated by many algorithms to help loop tiling stabilize its effectiveness

by avoiding “pathological” array sizes.
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In this paper we examine several such combined algorithms in terms

of cost-benefit trade-offs, and introduce a new algorithm. The prelimi-

nary experimental results show that more precise and costly tile selection

and array padding algorithms may not be justified by the resulting per-

formance improvements since such improvements may also be achieved

by much simpler and therefore less expensive strategies. The key issues

in finding a good tiling algorithm are (1) to identify critical performance

factors and (2) to develop corresponding performance models that allow

predictions at a sufficient level of accuracy. Following this insight, we

have developed a new tiling algorithm that performs better than previous

algorithms in terms of execution time and stability, and generates code

with a performance comparable to the best measured algorithm. Exper-

imental results on two standard benchmark kernels for matrix multiply

and LU factorization show that the new algorithm is orders of magnitude

faster than the best previous algorithm without sacrificing stability and

execution speed of the generated code.

1 Introduction

As the speed of modern microprocessors has increased much faster than the

memory speed, the memory traffic has become a key performance factor. As a

result, effectively keeping reused data in the cache reduces the memory traffic

and thus improves program performance. Cache performance is usually evalu-

ated in terms of cache misses (or miss rate) which, according to the causes, can

be classified as either compulsory misses or replacement misses[12]. A compul-

sory miss occurs if the first access to a block is not in cache. If a block in the

cache is evicted and later retrieved, the miss is called a replacement miss. Re-

placement misses can be sub-categorized as capacity misses and conflict misses

[16, 15]. Most compiler optimizations for improving cache performance have

focused on reducing capacity misses, conflict misses, or both. A recent study
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showed that both capacity misses and conflict misses are equally important in

determining the cache performance [24].

Loop tiling [38, 39, 21, 8, 26, 32, 34, 19, 6] is a well-known compiler opti-

mization that partitions the iteration space of a loop nest into tiles (or blocks) to

avoid replacement misses of those array elements frequently referenced during

the computation involving the tile. Early efforts have been to select the tile in

such a way that its working set fits into the cache to eliminate capacity misses,

and its size is maximized to minimize loop overhead [3]. Significant work has

been done to quantify the size of the working set [10, 29, 7].

Recent work takes conflict misses into account as well. With respect to tiling,

conflict misses are classified as either self conflict misses, i.e., misses due to array

elements of the same tile, or cross conflict misses, i.e., misses due to elements of

different tiles. In addition to eliminating capacity misses and maximizing cache

utilization, the tile is selected in such a way that there are no (or few) self conflict

misses, and cross conflict misses are minimized [21, 9, 8, 37, 32, 6]. Some work

has been done to quantify the total number of conflict misses [35, 13, 14, 11, 12].

Unfortunately, the performance of a tiled program resulting from existing

tiling heuristics shows a large amount of instability [32, 28]. Instability comes

from the so-called pathological array sizes [4, 10, 21, 2] which result in poor

choices of tile sizes. Array padding [1, 22, 23, 30, 31] is a compiler optimization

that increases the array sizes and initial locations to avoid the pathological cases.

It introduces space overhead but effectively stabilizes program performance. As

a result, more recent research efforts have investigated the combination of both

loop tiling and array padding in the hope that both magnitude and stability of

performance improvements of tiled programs can be achieved at the same time

[32, 28, 20].

Example: Figure 1 shows the original implementation of matrix multiplica-

tion and a version of tiled and padded program. The loop header do kk=1,n,w
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in the tiled version indicates that the loop counter kk starts from 1 and ends

when it hits n with increments of w. The loop order for the original version is

determined by applying loop order optimizations as proposed by McKinley et

al. [25]. The iteration space spanned by k-loop and i-loop is tiled. As a result,

a tile size h× w of array a is reused across iterations of the j-loop. Careful se-

lection of the tile size will realize the data reuse and thus improve the program

performance.

real a(n,n),b(n,n),c(n,n)

do j=1,n

do k=1,n

do i=1,n

c(i,j)=c(i,j)+a(i,k)*b(k,j)

real a(n+∆,n),b(n,n),c(n,n)

do kk=1,n,w

do ii=1,n,h

do j=1,n

do k=kk,min(kk+w-1,n)

do i=ii,min(ii+h-1,n)

c(i,j)=c(i,j)+a(i,k)*b(k,j)

Figure 1: Tiled and padded matrix multiplication: What is the best choice of

h, h, and ∆ to exploit data reuse?

In this paper, a subset of published tile size selection algorithms are examined

in a single framework – select from a set of candidate tile sizes the one that

minimizes a particular cost model. These algorithms can be distinguished by

their different choices of candidate tile sizes and cost models. The choices may

affect the efficiency of an algorithm, the magnitude of the resulting performance

improvement, and the stability of the improvement over different problem sizes.

Common performance factors in these choices are then identified. They are

discussed in terms of criticality in precision to the effectiveness of performance

optimization. Such information is crucial for any programmer or compiler writer
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who wants to use loop tiling to improve program performance. In addition, the

insights into the performance characteristics of previous algorithms can be used

to improve existing tiling algorithms, or develop new algorithms such as the

new tile size and pad size selection algorithm discussed in this paper. The new

algorithm gives priority to performance factors differently, and uses different

levels of approximations for these performance factors. Specifically, most previ-

ous algorithms search for tile sizes that eliminate self conflict misses, maximize

cache utilization, and minimize cross conflict misses. In contrast, the new algo-

rithm searches for tile sizes that eliminate TLB misses, have a reasonable cache

utilization, and generate few conflict misses.

To validate the findings, the new algorithm and a set of popular tile size

selection algorithms are used to produce tiled codes which are then executed on

real machines. Two benchmarks, matrix-matrix multiplication and LU factor-

ization, are selected since all published tile size selection algorithms use them

to demonstrate the effectiveness of their algorithms. Experimental results show

that the new algorithm generates code with a performance and stability com-

parable to the best existing tiling algorithms, but at a much lower cost in terms

of both space and execution time overheads.

In summary, the main contributions of the paper include

• A case study showing that more precise and costly models may not be

justified by the resulting performance improvements since much simpler

and faster models can achieve comparable effectiveness.

• A new tile selection algorithm that selects tiles very fast, and effectively

boosts and stabilizes performance while using only small pad sizes.

• A discussion of several critical performance factors and possible approxi-

mation models.

The rest of the paper is organized as follows. Section 2 presents a more
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detailed description of the tested algorithms. Several performance factors are

identified and discussed in Section 3. In addition, a new algorithm based on the

findings is presented. A discussion of our experimental results and findings can

be found in Section 4. Conclusions and future work are presented in the last

section.

2 Tile Size Selection Algorithms

Most tile size selection algorithms choose from a set of candidate tile sizes (T )

the one (t) that minimizes a particular cost model, i.e.,

argt min{cost(t)| t ∈ T } (1)

For simplicity, only square arrays of size n × n and rectangle tile sizes are

considered in this paper. Since a rectangle tile size can be described in terms

of its height (h) and width (w), the tile size selection problem is reduced to

determine the values of h and w that minimizes the cost model:

argh×w min{cost(h× w)| h× w ∈ T )} (2)

where

T ⊆ {h× w| 1 ≤ h, w ≤ n} (3)

In the following, we refer to the cache size as C, cache block size as b, and

cache associativity as a. All values are defined in terms of array elements, and

the array is assumed to be stored in column-major order. Furthermore, we

focus on the cases where the array size is too large to fit entirely in the cache

(C < n2), but its single column can completely fit in (n ≤ C).

Many tile size selection algorithms concentrate on the tile sizes in T being

non-conflicting. A tile size is non-conflicting if it does not generate any self

conflict misses [32]. Whether or not a tile size is non-conflicting depends on

6



Notation Interpretation

C cache size

b cache block size

a cache associativity

n the size of a two-dimensional array

P page size

E total number of entries in TLB

h× w a rectangle tile with height h and width w

h×w the selected tile size

N (C, b, a, n) the set of all non-conflicting tile sizes

M(C, b, a, n) the set of all maximal non-conflicting tile sizes

∆ pad size

Table 1: The summary of notations used in defining the tile size selection algo-

rithms. All values are defined in terms of array elements.

the cache organization (C, b, a) and the array size (n). As a result, the set of

all non-conflicting tile sizes is denoted as N (C, b, a, n). For algorithm efficiency,

almost all algorithms using non-conflicting tile sizes restrict their candidates to

the maximal ones. A non-conflicting tile size is maximal if neither its height

nor its width may be increased without causing self conflict misses. The set of

maximal non-conflicting tile sizes is in general much smaller than the set of all

non-conflicting tile sizes, i.e.,

M(C, b, a, n) ⊆ N (C, b, a, n) (4)

These notations are summarized in Table 1.

Table 2 shows a number of tile size selection algorithms for matrix-matrix

multiplication, extracted from the referenced papers. It can be seen that all

presented algorithms differ in the set of candidate tile sizes and/or the cost
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Algorithm T cost(h × w)

ess [9] {h × w| h = n, h × w ∈ M(C, 1, 1, n)} C/(h ∗ w)

lrw [21] {b × b| b = min(h, w), h × w ∈ M(C, 1, 1, n)} 1/h + 1/w + (2h + w)/C

tss [8] {(bh/lcl) × w| h ∗ w + h + w ≤ C, h × w ∈ M(C, 1, 1, n)} (2h + w)/(h ∗ w)

euc [32] {(h − l + 1) × w| h × w ∈ M(C, 1, 1, n)} 1/h + 1/w

moon [27] {h × w| h × w ∈ M(C, b, 1, n)} 1/h + 1/w + (h + w)/C

tli [6] {h × w| h × w ∈ M(C, b, 1, n)} 1/h + 1/w + (h + w)/C + h ∗ w/C2

wmc [37] {h × w| h = w, h ∗ w ≤ α ∗ C} C/(h ∗ w)

mhcf [26] {h × w| hw(1/h + 1/l + 1/n) ≤ α ∗ C} (1/h + 1/w)(1/n + 1/l) + 2/(h ∗ w)

eucPad [32] {(h − l + 1) × w| h × w ∈ M(C, 1, 1, n + ∆), 0 ≤ ∆ ≤ 8} 1/h + 1/w

tliPad {h × w| h × w ∈ M(C, b, 1, n + ∆), 0 ≤ ∆ ≤ 8} 1/h + 1/w

datPad [28] {h × w| h = w, h ≡ 0 (mod b), h ∗ w + h + w ≤ C} C/(h ∗ w)

h × w ∈ N (C, b, a, n + ∆)} ∆

Table 2: The candidate tile sizes and the cost models of different tile size (and

pad size) selection algorithms for matrix-matrix multiplication. The second

column T represents the set of candidate tile sizes considered by each algorithm.

The third column cost(h×w) indicates the cost model used by each algorithm

for the tile size h × w. Underlined algorithms are used for our quantitative

comparison. Note that the original mhcf algorithm uses multi-level cost models

while only one-level formulation is presented here for simplicity.

models they use. In general, most algorithms search for the largest tile sizes that

generate the least amount of capacity misses and conflict misses. Sometimes,

high cache utilization and low cache misses may not be achieved simultaneously.

As a result, we can consider each algorithm as a different way to approximate

cache utilization and number of cache misses, and to weigh between these two

quantities.

To find tile sizes that have few capacity misses, many algorithms restrict

their candidate tile sizes to be the ones whose working set can entirely fit in the

cache (e.g., h ∗ w ≤ C). To model self conflict misses due to low associativity
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cache, some algorithms such as wmc and mhcf use the effective cache size

(α∗C), while others explicitly find the non-conflicting tile sizes. Note that these

non-conflicting tile sizes, by the definition, do not generate capacity misses, i.e.,

N (C, b, a, n) ⊆ {h× w| h ∗ w ≤ C} (5)

In summary, the surveyed algorithms tend to focus their attention on tile sizes

that eliminate both capacity misses and self conflict misses. The minimization

of cross conflict misses and maximization of cache utilization are modeled in the

cost function, usually in terms of the cross conflict miss rate.

For algorithms using explicitly the non-conflicting tile sizes, M(C, b, a, n)

is approximated differently. Algorithms moon and tli find the exact set of

all non-conflicting tile sizes with respect to cache block size b. In contrast,

algorithms such as tss and euc approximate the set by always using b = 1. The

approximation leads to a simple formulaM(C, 1, 1, n) ≡ {hi ×min(wi, n) : i ≥

1} such that

h0 = C, h1 = n, hi+2 = hi mod hi+1

w0 = 1, w1 = bC/nc, wi+2 = bhi/hi+1c ∗ wi+1 + wi

The resulting algorithm is very fast, but the selected tile size is not guaranteed

to be non-conflicting. In contrast, algorithms such as tli propose simulation-

based methods to find the exact set for arbitrary b, which is computationally

more expensive. Table 3 gives an example illustrating various approximations

ofM(C, b, a, n).

The desired tile shape (h/w) has been explicitly specified in algorithms such

as lrw, ess, and wmc. Both lrw and wmc search for square tiles (h = w).

In contrast, ess finds extremely tall tiles (h = n). Tile shape can be implicitly

favored through the cost model. A more detailed discussion can be found in

Section 3.
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M(2048, 4, 1, 127) M(2048, 1, 1, 127) euc

{ 127 × 12 , { 127 × 16 , { 124 × 16 ,

113 × 16 , 16 × 113 , 13 × 113 ,

16 × 124 , 15 × 127 , 12 × 127 }

1 × 127 } 1 × 127 }

Table 3: An example illustrating various approximations of M(C, b, a, n), the

set of maximal tiles that have no self conflict misses. The reported sets are for

(C, b, a, n) = (2048, 4, 1, 127).

2.1 Array Padding Extension

Loop tiling alone is in general effective in improving program performance. How-

ever, there are certain array sizes that will introduce severe cache conflict misses

and deteriorate the performance improvement. Such array sizes are usually near

the power of two. Array padding [1, 22, 23, 30, 31] is a data layout transfor-

mation that sets a dimension in an array to a new size to reduce the number of

conflict misses. For example, the transformed code in Figure 1 has the leading

dimension of its array a padded with pad size ∆. With the appropriate value

of ∆ for each array size n, array elements in a tile are mapped to the differ-

ent cache lines, and therefore avoid the performance degradation due to severe

conflict misses. In short, with the help of array padding, loop tiling is guaran-

teed to be effective across all problem sizes. We say it has stable performance

improvement.

From tile size selection perspective, the array sizes that cause severe conflict

misses constrain the choice of candidate tile sizes when the non-conflictingness

is a desired feature. Usually the set of candidate tile size for these array sizes

are ill-shaped, i.e., either they are extremely long or extremely wide. It has

been observed that ill-shaped tile sizes cannot boost program performance. As
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an example, consider the set of candidate tiles for euc when array size n is 127,

as shown in Table 3. It can be seen that there is no tile whose shape is near

square, and therefore euc is constrained to select 124× 16 as its best choice. If

the leading dimension of the array is increased with pad size ∆ = 5, then euc

is able to find 61× 31 as its best choice.

Since M(C, b, a, n) is sensitive to the array size n, Rivera and Tseng [32]

proposed an extension eucPad, which allows to increase the array size by at

most 8 elements in the hope of finding a ”better” tile. By substituting different

approximations for M(C, b, a, n), we can evaluate the impact of the quality

(preciseness) of approximations toM(C, b, a, n) on the tiling effectiveness.

Algorithm datPad [28] takes a very different approach. Unlike eucPad

which simply uses padding to enlarge the set of tiles for selection, datPad

finds the largest tile with a specified (program-dependent) shape, and then uses

padding to eliminate self conflict misses. This algorithm considers different

cache block sizes.

3 Performance Factors and A New Algorithm

Tile shape (h/w) and cache utilization (h∗w/C) are two important performance

factors considered by many algorithms, either implicitly through the cost model

or explicitly through candidate tiles. In addition, many have observed that

there is a “tension” between tile shape and cache utilization [21, 8, 27, 32, 18].

Extremely wide tiles may introduce severe TLB thrashing. On the other hand,

extremely tall or square tiles may have low cache utilization.

For example, lrw will select the non-conflicting tile size 4 × 4 for case

(C, b, a, n) = (2048, 1, 1, 512), which has a very low cache utilization of 0.78%.

Algorithms such as ess, tss and euc allow rectangle tile shape in the hope to

avoid the problem. For the same configuration, euc is able to select tile size

512× 4 instead and boosts the cache utilization up to 100%. However, if array
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size n is changed to 516, euc will select tile size 16 × 127. Though the cache

utilization is as high as 99.22%, this tile size requires 127 entries in the page

table to keep it in the cache, given a page size of say 4KB. In contrast, ess se-

lects tile size 516× 3, an overly tall tile size. Though it will not introduce TLB

thrashing, it has only 75.59% cache utilization. As a result, surveyed algorithms

have different ways to weigh these performance factors.

Algorithms lrw, ess, and datPad give priority to tile shape over cache

utilization. For datPad, the best tile shape is program dependent. For example,

it determines that the best tile shape for matrix multiplication is square (h/w =

1) and the best tile shape for LU decomposition is h
w = b. In contrast, euc

suggests the same tile shape for both benchmarks because they are all linear

algebra codes.

Tile shape is sometimes implicitly preferred through the cost model. For

example, euc’s cost model 1/h + 1/w favors square tiles over non-square ones

with the same area. For linear algebra codes, the memory access pattern within

a tile is usually due to several array references. To model the effect of tile

h × w interfering with two regions of sizes h × 1 and 1 × w, we can estimate

the probability of cross conflict misses in terms of footprint overlap, as done

in [21, 8]. As a result, euc’s cost model h+w
h∗w is derived. That is, a “good”

tile shape not only avoids TLB thrashing and low cache utilization but also

minimizes cross conflict miss rate.

TLB thrashing have been explicitly considered in tss and a version of mhcf

with multi-level cost functions. The complicated version of mhcf finds tile

sizes that has no TLB misses, few cache misses, and minimize the (program

dependent) cost model [26]. It can be done implicitly as well. For example, the

constraints of h/w = 1 and h ∗ w ≤ C imply that h ≤
√

C. The value
√

C may

always be smaller than the page table size. We feel that TLB thrashing is a

crucial performance factor since a TLB miss costs more than a cache miss and

may cause cache stalls.
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Finally, we want to mention that cache associativity has been taken into

account by datPad but not other algorithms surveyed in this paper. Algorithm

datPad uses cache associativity to adjust the effective cache size (i.e., α = a−1
a ).

In our target machines, we carefully chose one that has a 4-way set associative

cache to evaluate the importance of this performance factor.

3.1 A New Algorithm

Based on the discussion above, we propose in this paper a new algorithm new-

Pad with the following three guidelines:

• The best tile size has few conflict misses and good cache utilization.

• The best tile size eliminates TLB misses.

• The padding choices should not be fixed a priori.

These guidelines reorder the priorities of performance factors. Specifically, in-

stead of searching for tile sizes that eliminate self conflict misses, maximize cache

utilization, and minimize cross conflict misses, as most previous algorithms do,

the new algorithm looks for tile sizes that eliminate TLB misses, generate few

conflict misses, and have a reasonable cache utilization. The new algorithm is

greedy in that it increases pad size until a “qualified” tile size is found with the

current pad size. If there are more than one such tile sizes, the algorithm will

select the one that minimizes the cost model. The pseudo code of the algorithm

is presented in Figure 2, with parameters cost(h× w) and good(h× w).

In Figure 3, a possible formulation of good(h × w) and cost(h × w) is

presented. A good tile size allows only part of TLB entries to be touched by the

entire tile to avoid TLB thrashing. In a way it restricts the possible values of w.

In addition, its area should be sufficiently large to guarantee a reasonable cache

utilization. Finally, its shape should not be “too far away” from the “optimal”

shape h/w = b (explained below).
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∆← 0

repeat

h×w ← argmin{cost(h× w) : good(h× w), h× w ∈M(C, 1, 1, n + ∆)}

∆← ∆ + 1

until h×w exists

Figure 2: The skeleton of new tiling algorithm newPad

The cost model of newPad is similar to euc’s cost model h+w
h∗w , but newPad

takes into account the effect of large cache block size (b > 1). As a result, the

cost model becomes h/b+w
(h/b)w = b

h + b
w . A consequence of using the new cost

model is that the optimal tile shape, instead of square, becomes h/w = b,

a rather long tile shape. Since tile shape implicitly estimates the number of

cross conflict misses, bounding the tile shape and making sure it comes from

M(C, 1, 1, n + ∆) will introduce limited conflict misses.

Among all presented algorithms, newPad is closest to datPad. As a matter

of fact, datPad can be considered as a specialization of newPad by provid-

ing more strict definitions of a good tile shape and cache utilization. Both of

them do not fix the possible pad sizes and may therefore avoid cases where the

fixed-amount pad choice strategy can only select “bad” tile sizes. Algorithm

newPad considers TLB thrashing crucial, while datPad and eucPad do not.

Table 4 summarizes the different characteristics of the algorithms tested in our

experimental study. The final tile selections computed by these algorithms for

the example in Table 3 are listed in Table 4 as well.

We do not claim that our formulation of good(h × w) and cost(h × w) is

the optimal choice. However, we believe that our model reflects the importance

of the different performance factor correctly. In addition, for any given tile size

h × w, there always exists a pad size with no self conflict misses, for example,

14



Algorithm Non-conflicting Pad choices Selected tile

org No tiling

ess guaranteed 0 127 × 16 (0)

lrw almost 0 16 × 16 (0)

euc[32] almost 0 124 × 16 (0)

eucPad[32] almost 0-8 61 × 31 (5)

tliPad[6] guaranteed 0-8 32 × 63 (3)

datPad[28] guaranteed unlimited 44 × 44 (55)

newPad almost unlimited 98 × 16 (3)

Table 4: Tiling heuristics used for our experimental study. The rightmost col-

umn shows the final selections of various tile selection algorithms for the example

in Table 3. The values in parentheses are the final pad sizes.

∆ = iC + h [20]. As a result, newPad will always terminate.

4 Experimental Evaluation

To compare different tile size selection algorithms, the array size n was var-

ied from 100 to 1100 double-precision data elements with a step size of 4 el-

ements. For each algorithm, two linear algebra benchmark kernels, namely

matrix-matrix multiplication (mm) and LU-factorization without pivoting (lu),

were executed on three target architectures with different cache organizations.

The two benchmarks have been used by many published papers [36, 21, 8, 32, 28]

to evaluate the effectiveness of their tile selection algorithms. For machines with

multi-level caches (and thus multiple cache sizes), Rivera and Tseng have found

that nearly all the benefits can be achieved by simply targeting the first-level

cache, provided that the next level cache is much larger [33]. Therefore, the

discussed algorithms assume tile size selection of the first-level data cache.
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cost(h× w) = b/h + 1/w

good(h× w) = min(n/P, 1) ∗ w ≤ β ∗ E(no TLB misses)

h ∗ w ≥ α ∗ C(good cache utilization)

| shape(h× w) − b| ≤ (b + 1)/2(few cache misses)

shape(h× w) =




h/w if h ≥ w

2− h/w otherwise

Figure 3: The implementation of newPad (α = β = 0.75)

Machine CPU Data Cache TLB

Type MHz C b a E P

Ultra-1 UltraSparc 143 16KB 32B direct 64 8KB

SS5 MicroSparc-II 110 8KB 16B direct 64 4KB

SS20/71 SuperSparc-II 75 16KB 32B 4-way 64 4KB

Table 5: Different target architectures

Each kernel was compiled by SUN’s SparcCompiler 5.0 f77 compiler with

the -O switched on, and executed in five runs. The minimum execution time,

excluding the time for data initialization, was then reported. This way, we

can minimize abrupt noises and file cache effects. The loop orders for the un-

tiled versions were determined by applying loop order optimizations as proposed

by McKinley et al. [25]. All experimental results are represented in terms of

MFLOPS. The three target architectures are shown in Table 5.
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4.1 Performance and Stability

Figure 4 and Figure 5 plot the achieved MFLOPS rates (y-axes) for each of

the algorithms and target machines for our 251 input array sizes ranging from

100 to 1100 by a step of 4 (x-axes). We are concerned with the quality of

each algorithm in terms of its performance improvement magnitude and stabil-

ity. Table 7 summarizes the results by reporting average performance and the

standard deviation over all problem sizes. The following observations can be

made:

• lrw and euc have similar performance improvement, which is better than

ess.

• euc has a significant number of pathological cases which degrade perfor-

mance improvement (note the downward peaks in euc).

• Array padding can effectively stabilize the performance improvement (for

instance, compare eucPad against euc).

• Compared with tliPad, eucPad has similar performance improvement

but slightly better stability.

• newPad and datPad have similar performance improvement and stabil-

ity. The stability of both algorithms is significantly better than eucPad

and tliPad.

In summary, the above algorithms have similar performance improvement

magnitude. While array padding helps stabilize the performance improvement,

only datPad and newPad have a consistent behavior over all tested array sizes.

4.2 Cost-Benefit Trade-Offs

newPad and datPad have similar effectiveness in stabilizing performance im-

provement due to loop tiling, at the cost of padding dummy array elements.
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Figure 4: Matrix multiplication. The x-axes are problem sizes, the y-axes

MFLOPS.
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Ultra-1,SS20/71 SS5

matrix multiplication (mm)

eucPad 3.98 (2.73) 3.92 (3.00)

tliPad 3.89 (2.89) 3.94 (2.99)

datPad 66.58 (46.68) 19.81 (16.54)

newPad 4.96 (8.43) 3.30 (7.21)

LU-factorization (lu)

datPad 51.76(35.40) 19.43(15.89)

all others same as for mm

Table 6: Analysis of space overhead due to padding. All values are represented

in terms of final pad sizes in the leading array dimension. They are the average

and standard deviation of pad sizes of 251 input array sizes. The values in the

parenthesis are standard deviations.

With respect to the space overhead due to array padding, an analysis reveals

that on average newPad introduces slightly more space overhead than eucPad

but much less than datPad, as shown in Table 6. Compared to eucPad, the

deviation by newPad is slightly higher. It is the price to be paid for “unlimited”

padding.

Another dimension of the costs of a tile size selection algorithm is its execu-

tion time. Algorithms eucPad and newPad are based on the Euclidean GCD

computation and are therefore fast to compute. datPad performs memory-

based simulation to find the smallest pad size that ensures no self conflict misses

in the selected tile. tliPad uses a clever “simulation” strategy by searching the

tiles as a computation-based incremental process. Our data show that on aver-

age eucPad and newPad all take approximately 80 microseconds, tliPad takes

3.68 seconds, and datPad takes 0.057 seconds. That is, algorithms tliPad and
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datPad are executed several orders of magnitude (6× and 3×, respectively)

slower than the Euclidean GCD based algorithms. The long execution time of

tliPad is due to the fact that the algorithm does not know a priori the final tile

and pad size, and enumerates all possible choices to determine the best one. In

contrast, datPad has a predetermined tile shape and thus can quickly compute

the largest tile size with this shape and reject inappropriate pad sizes.

The preliminary experimental data suggest that more precise and costly tile

selection and array padding may not be justified by the resulting performance

improvements since such improvements can also be achieved by simpler, more

approximate and therefore cheaper models. The quality of a tile selection al-

gorithm is determined by its ability to identify critical performance factors and

the degree in which such factors need to be approximated through performance

models.

Experimental results show that less strict definitions achieve comparable

magnitude and stability of performance improvements with significantly smaller

pad sizes.

5 Conclusions and Future Work

We have presented several algorithms combining tile selection and array padding.

A new tile selection algorithm has been introduced. The new algorithm and

other published algorithms were evaluated in terms of the magnitude and stabil-

ity of the performance improvement, the space overhead introduced by padding,

and the time for tile selection. The experiments showed that the new algorithm

generates tiles of comparable performance and stability as the best of our tested

algorithms, but has a significant lower space overhead (factor of 7) and selec-

tion time (up to three orders of magnitude). We have found that the cost-benefit

balance is a key in designing such an effective, yet inexpensive tile selection al-

gorithm. We have observed that more precise and costly tile selection and array
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Ultra-1 SS5 SS20/71

matrix multiplication (mm)

org 19.59 (2.23) 6.35 (0.65) 13.58(1.17)

ess 24.44 (4.01) 8.33 (1.65) 13.33 (2.17)

lrw 29.97 (3.39) 12.71 (1.87) 15.31 (1.64)

euc 29.97 (3.39) 13.40 (1.36) 15.34 (1.44)

eucPad 31.53 (2.09) 14.02 (0.62) 15.97 (0.87)

tliPad 30.90 (1.96) 13.54 (0.94) 15.69 (0.78)

datPad 31.30 (0.40) 14.24 (0.28) 16.12 (0.23)

newPad 31.69 (0.43) 13.58 (0.52) 16.24 (0.30)

LU-factorization (lu)

org 17.02 (1.86) 7.29 (0.83) 8.62 (0.96)

ess 19.68 (2.18) 6.91 (1.04) 9.70 (0.41)

lrw 20.40 (2.34) 8.61 (1.20) 9.42 (0.69)

euc 20.85 (2.78) 8.70 (1.25) 9.04 (0.95)

eucPad 21.45 (1.70) 9.90 (0.59) 9.11 (0.60)

tliPad 21.03 (1.71) 9.79 (0.58) 9.02 (0.59)

datPad 22.61 (0.67) 10.26 (0.17) 9.79 (0.28)

newPad 22.26 (0.76) 9.97 (0.25) 9.54 (0.37)

Table 7: Average performance in MFLOPS. The values in parentheses are the

standard deviation.
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padding may not be justified by the resulting performance improvement since

such improvements may also be achieved by much simpler and cheaper models.

A few performance factors for tile selection have been identified and dis-

cussed. We found that: (1) TLB thrashing effect is critical, (2) tile shape is

important, but squareness is not critical, (3) tile area is important, but largest

cache utilization is not critical, and (4) set associativity is not important. These

observations hold for the two prevalent benchmark kernels mm and lu.

In the future, we are planning to perform experiments on a wider range of

benchmark programs and underlying architectures. In addition, we are inter-

ested in investigating the impact of other program transformations such as tiling

for multiple arrays and register tiling [5] on tile selection. Finally, we want to

evaluate the possibility of automatic construction of effective, yet low-cost mod-

els [17].
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