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Abstract

Energy conservation without performance degradation is an important goal for battery-
operated computers, such as laptops and hand-held assistants. In this paper we study
application-supported device management for optimizing energy and performance. In par-
ticular, we consider application transformations that increase device idle times and inform the
operating system about the length of each upcoming period of idleness. We use modeling
and experimentation to assess the potential energy and performance benefits of this type of
application support for a laptop disk. Furthermore, we propose and evaluate a compiler frame-
work for performing the transformations automatically. Our main modeling results show that
the transformations are potentially beneficial. However, our experimental results with six real
laptop applications demonstrate that unless applications are transformed, they cannot accrue
any of the predicted benefits. In addition, they show that our compiler can produce almost the
same performance and energy results as hand-modifying applications. Overall, we find that
the transformations can reduce disk energy consumption from 55% to 89% with a degradation

in performance of at most 8%.

Index Terms — 1/O devices, energy conservation, performance, modeling, compilers.



1 Introduction

Recent years have seen a substantial increase in the amount of research on battery-operated com-
puters. The main goal of this research is to develop hardware and software that can improve energy
efficiency and, as a result, lengthen battery life. The most common approach to achieving energy
efficiency is to put idle resources or entire devices in low-power states until they have to be ac-
cessed again. The transition to a lower power state usually occurs after a period of inactivity (an
inactivity threshold), and the transition back to active state usually occurs on demand. The tran-
sitions to and from low-power states incur time and energy penalties. Nevertheless, this strategy

works well when there is enough idle time to justify incurring such costs.

Previous studies of device control for energy efficiency have shown that some workloads do
exhibit relatively long idle times. However, these studies were limited to interactive applications
(or their traces), slow microprocessors, or both. Recent advances in fast, low-power microproces-
sors and their use in battery-operated computers are increasing the number of potential applications
for these computers. For instance, nowadays laptop users frequently run non-interactive applica-
tions, such as movie playing, decompression, and encryption. For most of these applications, fast
processors reduce device idle times, which in turn reduce the potential for energy savings. Fur-
thermore, incurring re-activation delays in the critical path of the microprocessor now represents
a more significant overhead (in processor cycles), as re-activation times are not keeping pace with

microprocessor speed improvements.

Thus, to maximize our ability to conserve energy without degrading performance under these
new circumstances, we need ways to increase device idle times, eliminate inactivity thresholds,
and start re-activations in advance of device use. Device idle times can be increased in several
ways and at many levels, such as by energy-aware scheduling or prefetching in the operating
system, by performing loop transformations during compilation, etc. The set of possibilities for
achieving the other two goals is more limited. In fact, those goals can only be achieved with

fairly accurate predictions of future application behavior, which can be produced with programmer



or compiler involvement. For these reasons, we advocate that programmers or compilers, i.e.
applications, should be directly involved in device control in single-user, battery-operated systems

such as laptops.

To demonstrate the benefits of this involvement, in this paper we evaluate the effect of trans-
forming explicit 1/0-based applications to increase their device idle times. These transformations
may be performed by a sophisticated compiler, but can also be implemented by the programmer
after a sample profiling run of the application. For greater benefits, the transformations must in-
volve an approximate notion of the original and target device idle times. Thus, we also evaluate
the effect of having the application inform the duration of each device idle period (hereafter re-
ferred to as a CPU run-length, or simply run-length, the time during which the CPU is busy and
the device is idle) to the operating system. With this information, the operating system can apply
more effective device control policies. (For simplicity, we focus on the common laptop or hand-
held scenario in which only one application is ready to run at a time; other applications, such as
editors or Web browsers, are usually blocked waiting for user input.) In particular, we study two
kernel-level policies, direct deactivation and pre-activation, that rely on run-length information to
optimize energy and performance. Direct deactivation eliminates inactivity thresholds, taking the
device directly to the best low-power state for a certain run-length, whereas pre-activation removes

the device re-activation from the critical computation path.

We develop simple analytical models that describe the isolated and combined energy and per-
formance benefits of program transformations and these energy management policies. The models
allow a quick assessment of these benefits, as a function of device and application characteristics

such as the overhead of device re-activation, and the distribution of run-lengths.

The models are general and apply to any application and device with more than one power
state. As a concrete example, we apply them in the control of a laptop disk. Disks are responsible
for a significant fraction of the energy consumed by laptops. Li et al. [13] and Douglis et al. [4],

for example, report fractions of 20 and 30%. As a result, several techniques have been proposed



for conserving laptop disk energy, e.g. [3, 9, 21, 14, 19].
Interestingly, our experiments with the laptop disk indicate that our initial models were not

accurate. The reason is that the disk does not behave exactly as described in the manufacturer’s

manuals. As a result, we develop behavior-adjustment models to extend the initial models.

The execution of several applications on our laptop provides the run-length information we
plug into the models. Unfortunately, our experiments show that several common applications do
not exhibit long enough run-lengths to allow for energy savings. To evaluate the potential of
application transformations and application/operating system interaction, we manually transform
applications, implement the policies in the Linux kernel, and collect experimental energy and per-
formance results. These results show that our adjusted models can accurately predict disk energy
consumption and CPU time. Furthermore, the results demonstrate that the transformed applica-
tions can conserve a significant amount of disk energy without incurring substantial performance
degradation. Compared to the unmodified applications, the transformed applications can achieve

disk energy reductions ranging from 55% to 89% with a performance degradation of at most 8%.

Encouraged by these results, we implemented a prototype compiler based on the SUIF2 com-
piler infrastructure that automates the manual code transformations and performs run-time profiling
to determine run-lengths. Our preliminary results with the compiler infrastructure are as good as

those with hand-modified applications.

In summary, we make the following contributions:

e \We propose transformations to explicit 1/0-based applications that increase their CPU run-
lengths (and consequently their device idle times). Another transformation informs the op-

erating system about the upcoming run-lengths.

e \We develop analytical models to evaluate our approach to application-supported device man-
agement. In this paper, we chose to apply our models to a laptop disk. For this disk, we

show that simple and intuitive models are not accurate. With adjusted models, we assess



the behavior of any application. Unfortunately, the adjusted models are neither simple nor

intuitive.

e We implement and experimentally evaluate our transformations for real applications and a
real laptop disk, as they are applied by the programmer or with compiler support. We also

consider the effect of operating system-directed prefetching.

The remainder of this paper is organized as follows. The next section discusses the related
work. Section 3 details the different policies we consider and presents models for them. Section
4 describes the disk, the application workload, the application transformations, and the compiler
framework we propose. The section also presents the results of our analyses and experiments.

Finally, section 5 summarizes the conclusions we draw from this research.

2 Reated Work

Application support for devicecontrol. There have been several proposals for giving applications
greater control of power states [5, 17, 15, 18, 2, 10]. Carla Ellis [5] articulated the benefits of
involving applications in energy management, but did not study specific techniques. Lu et al. [17]
suggested an architecture for dynamic energy management that encompassed application control
of devices, but did not evaluate this aspect of the architecture. In a more recent paper, Lu et al.
[15] studied the benefit of allowing applications to specify their device requirements with a single
operating system call. Weissel et al. [21] allowed applications to inform the operating system
when disk requests are deferrable or even cancelable. Microsoft’s OnNow project [18] suggests
that applications should be more deeply involved, controlling all power state transitions. Flinn and

Satyanarayanan [7] first demonstrated the benefits of application adaptation.

Our work differs from these approaches in that we propose a different form of application
support: one in which the application is transformed to increase its run-lengths and to inform

the operating system about each upcoming run-length, after a device access. This strategy al-
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lows us to handle short-run-length and irregular applications. Our approach also simplifies pro-
gramming/compiler construction (with respect to OnNow) without losing any energy conservation

opportunities.

Delaluz et al. [2] and Hom and Kremer [10] are developing compiler infrastructure for similar
approaches to application support. Delaluz et al. transform array-based benchmarks to cluster
array variables and conserve DRAM energy, whereas Hom and Kremer transform such benchmarks
to cluster page faults and conserve wireless interface energy. Both groups implement their energy

management policies in the compiler and use simulation to evaluate their transformations.

In our approach, the compiler or programmer is responsible for performing transformations

to increase the possible energy savings, but the actual management policies are implemented in
the operating system for three reasons: (1) the kernel is traditionally responsible for managing all
devices; (2) the kernel can reconcile information from multiple applications; and (3) the kernel can
actually reduce any inaccuracies in the run-length information provided by the application, accord-
ing to previously observed run-lengths or current system conditions; the compiler does not have
access to that information. Nevertheless, our work is complementary to theirs in that we exper-
imentally study a different form of application transformation under several energy conservation
policies.
Analytical Modeling. We are aware of only a few analytical studies of energy management strate-
gies. Greenawalt [8] developed a statistical model of the interval between disk accesses using a
Poisson distribution. Fan et al. [6] developed a statistical model of the interval between DRAM
accesses using an exponential distribution. In both cases, modeling the arrival of accesses as a
memoryless distribution does not seem appropriate, as suggested by the success of history-based
policies [3, 2].

Furthermore, our combination of modeling and experimentation is important in that the models
determine the region in the parameter space where application support is most effective, whereas

the experiments determine the region where applications actually lie.



Direct Deactivation and Pre-activation. As far as we know, only recently have application-
supported policies for device deactivation and pre-activation been proposed [2, 10]. Other works,
such as [4], simulate idealized policies that are equivalent to having perfect knowledge of the future
and applying both direct deactivation and pre-activation. Rather than simulate, we implement and

experimentally evaluate direct deactivation and pre-activation.

Conserving Disk Energy. Disks have been a frequent focus of energy conservation research, e.g.
[22, 13, 4, 3,9, 17, 11, 8, 16, 21, 14]. The vast majority of the previous work has been on history-
based, adaptive-threshold policies, such as the one used in IBM disks. Because our application-
supported policies can use information about the future, they can conserve more energy and avoid
performance degradation more effectively than history-based strategies. Furthermore, we focus on

non-interactive applications and application-supported disk control.

3 Modeds

In this section, we develop simple and intuitive models of five device control policies: Energy-
Oblivious (EO), Fixed-Thresholds (FT), Direct Deactivation (DD), Pre-Activation (PA), and Com-
bined DD + PA (CO). The models predict device energy consumption and CPU performance, based

on parameters such as power consumption at each device state and application run-lengths.

For the purpose of terminology, we define the power states to start at number 0, the active state,
in which the device is being actively used and consumes the most power. The next state, state 1,
consumes less power than state 0. In state 1, there is no energy or performance overhead to use
the device. Each of the next (larger or deeper) states consumes less power than the previous state,
but involves more energy and performance overhead to re-activate. Re-activations bring the device

back to state 1.

Before presenting the models, we state our assumptions: (1) We assume that run-lengths are

exact. This assumption means that we are investigating the upper-bound on the benefits of the



policies that exploit DD and PA. In practice, we expect that run-lengths can be approximated with
good enough accuracy to accrue most of these benefits; (2) We assume that the application calls to
the operating system have negligible time and energy overheads. Our experiments show that these
overheads are indeed insignificant in practice. For example, the implementation of the DD policy
for disk control takes on the order of tens of microseconds to execute on a fast processor, compared
to run-lengths on the order of milliseconds; and (3) We assume that run-lengths are delimited by
device operations that occur in the critical path of the CPU processing (e.g. blocking disk reads
that miss in the file system buffer cache). The models can be extended to consider non-blocking

accesses, but this is beyond the scope of this paper.

3.1 Modeling the Energy-Oblivious Policy

The EO control policy keeps the device at its highest idle power state, so that an access can be
immediately started at any time. Thus, this policy promotes performance, regardless of energy

considerations.

We model a device under the EO policy to use energy per run-length (£¢°) that is the product of
the run-length (R) and the power consumption when the device is in state 1 (P!), i.e. E® = R- P!,

The CPU time per run-length under the EO policy (7¢°) is simply the run-length, i.e. T¢° = R.

3.2 Modeling the Fixed-Thresholds Policy

The FT control policy recognizes the need to conserve energy in battery-operated computers. It
determines that a device should be sent to the consecutive lower power states after fixed periods of
inactivity. We refer to these periods as inactivity thresholds. For example, the device could be put
in state 2 from state 1 after an inactivity period of 4 seconds (the inactivity threshold for state 1),
and later be sent to state 3 after another 8 seconds (the threshold for state 2), and so on. Thus, after

12 seconds the device would have gone from state 1 to state 3.



We define the energy consumed by the device under FT per run-length (E/*) as the sum of
three components: the energy spent going from state 1 to the state before the final state f, the
energy spent at state f, and the energy necessary to re-activate the device starting at state f. Thus,
Bft= (I P T+ B + (R— (ZI21 7)) - PP + B,

deact

In this equation, P* represents the power consumed at state s, 7 is the time spent at state s

s,5+1
deact

(equal to the inactivity threshold for this state), F is the energy consumed when going from
state s to s + 1, and E({ct is the re-activation energy from state f to state 1. The final state f is
the lowest power state that can be reached within the run-length, i.e. the largest state such that
SIZIT <R

The CPU time per run-length (7'/%) is then the run-length plus the time to re-activate from state
f(@L)ie Tt =R+ TL,.

=0and 7T}

act

Note that E!

act

= 0, because in state 1 the device is ready to be used. In addition,
the time consumed by the transition from state s to a lower power state s, T3° . does not appear

deact?

in the time equations because it is not in the critical path of the CPU.

FT can be implemented by the operating system (according to the ACPI standard [1]) or by the
device itself. These implementation differences are of no consequence to our model. In fact, since

FT conserves energy in a well-understood fashion, we use it as a basis for comparison.

3.3 Modeling the Direct Deactivation Policy

FT is based on the assumption that if the device is not accessed for a certain amount of time, it is
unlikely to be accessed for a while longer. If we knew the run-lengths a priori, we could save even
more energy by simply putting the device in the desired state right away. This is the idea behind

the DD control policy, i.e. use application-level knowledge to maximize the energy savings.

We model the device energy consumed per run-length under DD (£9%) as the energy consumed

to get to the low power state, plus the energy consumed at that state, and the energy required to



re-activate the device, i.e. E% = EXI' + PI'. R+ EL,.

Note that we differentiate between states f and f’, as FT and DD do not necessarily reach
the same final state for the same run-length. In fact, f’ is defined to be the lowest power state
for which going to the next state would consume more energy, i.e. the largest state such that
(Eyl .+ R-PI'+ EL) < (EXI + R-PI'Y 4+ BLY.

eact eact

The CPU time per run-length for DD (7%) is then similar to that for FT: 7% = R + T,

3.4 Modeling the Pre-Activation Policy

In both FT and DD, the time to bring the device back from a low-power state to state 1 is exposed
to applications, as the transition is triggered by the device access itself. However, with run-length
information from the application, we can hide the re-activation overhead behind useful computa-
tion. This is the idea behind PA, i.e. to allow energy savings (through FT or DD) while avoiding
performance degradation. For maximum energy savings, the pre-activated device should reach
state 1 “just before” it will be accessed. The specific version of PA that we model uses FT to save

energy. PA should achieve the same performance as EO, but with a lower energy consumption.
We model the device energy consumed per run-length under PA (E?*) as EP* = (Zfl;l Ps.
T+ o)) + (R— (21 1°) = Thy) - P + EL,

deact

Again, we highlight that the final low-power state f” need not be the same as for FT and DD for
the same run-length, because re-activation occurs earlier with device pre-activation. f” is defined

as the highest power state such that (27", 75 + T2, ") > R.

The CPU time per run-length under this policy (77*) is T?* = R.

3.5 Modeling the Combined Policy

We can achieve the greatest energy savings without performance degradation by combining PA

and DD. This is the idea behind the CO policy.
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Parameter | Explanation

EPo! Energy consumed by policy pol

TP CPU time consumed by policy pol

R Run-length

P? Average power consumed at state s

Ts Inactivity threshold for state s

E:, Average device energy to re-activate from state s

Ej;;'d Average device energy to transition from state s to lower power state s’
Ts., Average time to re-activate from state s

Table 1: Parameters for the models.

We model the device energy (E<°) and the CPU time (7°*°) under CO as E® = Ej/* + (R —
T/*) . P/ + EI*, and T = R.

State fx is again different than previous final states, since the choice of state needs to take the
energy overhead of pre-activation into account. fx is defined as the lowest power state such that
(Eylt, + (R—T) - PP + Bl < (Bn + (R- T - PI+ 4 B,

deact deact

Table 1 summarizes the parameters to the models and table 2 summarizes all equations.

3.6  Modeling Whole Applications

So far, we presented models that compute energy and time based on a single run-length. These
models could be applied directly to determine the energy and time consumed by an application,
if we could somehow find a run-length that represented all run-lengths of the application. This
is easy to do for an application in which all run-lengths are of the same size. Unfortunately,
few applications are this well-behaved. Another option would be to use the average run-length.
However, the average run-length is not a good choice for two reasons: (1) applications may exhibit
widely varying run-lengths, making average calculations meaningless; and (2) the models are non-
linear, so modeling energy and time based on the average run-length would not be accurate, even

if the average could be meaningfully computed.

Instead of using the average run-length, we model applications by separating run-lengths into

ranges or groups for which the models are linear, i.e. groups are associated with power states. For
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Policy | Equation
EO E=R-P!

T=R
FT | BE= (5P T° + Egy) + (R— (S5 T9)) - PI) + Ela
T=R+T.

f is the largest state such that Z{;ll T° <R
DD |E=EJ P - RtEL,

deact !
T=R+Th
f"is the largest state such that

(Bigaee R P + Ele)) < (Bizaes” + B- P/ + By i
PA- | E= (S PP T+ Egaty) + (R — (S5 T°) = Tiar) - PY') + By
T=R

#" is the smallest state such that (X7, 7% + T2, ") > R

CO | E=Eg:+(R-Th) P+ EL
T=R
f* is the largest state such that

(Bile, + (R—Th) - PP + BL) < (B + (R— T - PP+ B

deact deact

Table 2: Energy and time equations for all policies.

instance, under FT, we define the groups according to the inactivity thresholds, i.e. group 1 is the
set of run-lengths such that R < T, group 2 is the set of run-lengths such that 7t < R < T2,
and so on. This grouping scheme allows us to work with the run-length exactly in the middle of
each range, as the average run-length for the group. However, using these run-lengths we would

not know whether we were underestimating or overestimating energy and time.

Instead of doing that, we find it more interesting to bound the energy and time consumed by
applications below and above, using the minimum and maximum values in the groups, respectively.
Besides, focusing on upper and lower bounds obviates the need to determine the distribution of run-
lengths, which has been shown a complex proposition [6]. For a whole application, the upper and
lower bounds on energy and time depend solely on the fraction of the run-lengths that fall within
each group. More specifically, the overall potential of each policy is lower bounded by the sum
of the minimums and upper bounded by the sum of the maximums. For instance, under FT, if all
run-lengths for an application are in group 2, the minimum energy consumption occurs when all

run-lengths are 7.
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Application transformations that lengthen run-lengths have the potential to increase energy
savings. In terms of our groups, lengthening run-lengths increases the fraction of run-lengths in
larger numbered groups, with a corresponding decrease in the fraction of run-lengths in smaller

numbered groups.

4 Evaluation for a Laptop Disk

The models above are not specific to any application or device. In fact, they can easily be applied
to a variety of applications (such as communication or disk-bound applications) and devices (such
as network interfaces or disks). The key is that applications and devices should have well-defined

run-lengths and power states, respectively.

As an example device, this section applies our models in the control of a Fujitsu MHK2060AT
laptop disk, which can be found in a number of commercial laptops. The section also details the
application transformations and the implementations of the management policies for the disk. Our

study of this disk is representative of other laptop disks.

The section proceeds as follows. First, we adjust the models for our disk and instantiate their
parameters. Next, we measure the run-lengths of several laptop-style applications on a 667 MHz
Pentium I11-based system to find the policies’ potential in practice. After that, we discuss the ben-
efits achievable by these applications. This leads us to the specific transformations and compiler
framework we propose. Last, to corroborate the models, we run both original and modified ap-
plications with and without operating system prefetching, and measure the resulting energy and

performance gains.

4.1 The Fujitsu Disk

The Fujitsu disk is a 6-Gbyte, 4200-rpm drive with ATA-5 interface. According to its manual, it

only implements four power states:
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Policy | Equation Condition
All Adj(R) = min(1.1,R) - (1.75-0.92) |R<T!
DD Adj(R) =0.4-(1.75 — PT) R>T"
co Adj(R) = 0.4 - (1.75 — P/¥) R>T!
FT,PA | Adj(R)=(5—-R+T")-(0.22—-0.74) | T' < R<
T +5

Table 3: Energy adjustment models for all policies.

0. Active — the disk is performing a read or a write access.

1. Idle — all electronic components are powered on and the storage medium is ready to be
accessed. This state is entered after the execution of a read or write. This state consumes

0.92 W.

2. Standby — the spindle motor is powered off, but the disk interface can still accept commands.

This state consumes 0.22 W.

3. Sleep — the interface is inactive and the disk requires a software reset to be re-activated. This

state consumes 0.08 W.

However, our experiments demonstrate that there are two hidden transitional states. The first
occurs before a transition from active to idle. Right after the end of an access, the disk moves to
the hidden state. There, it consumes 1.75 W for at most 1.1 secs, regardless of policy. The disk
also goes into this hidden state for 0.4 secs when we transition to standby or sleep in DD or CO.
The second hidden state occurs when we transition from idle (FT and PA) or the first hidden state
(DD and CO) to standby or sleep. Before arriving at the final state, the disk consumes 0.74 W at
this hidden state for at most 5 secs. (The entire overhead of this hidden state, 5 secs at 0.74 W, is
included in E 4., from idle state in our modeling.) We do not number these extra states. To make
the models more accurate, we extend them to account for the hidden states. The adjustment factors

for energy are listed in table 3. No time adjustments are needed.

Table 4 lists the measured value for each of the parameters of our models. The measurements

include the hidden states, obviously. The values marked with “1” were picked assuming that the
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Parameter Measured Value
P! 0.92 W
P? 0.22W
p3 0.08 W
T (FT) 9.222 secst
T? (FT) 16.429 secst
T (PA) 8.712 secst
T2 (PA) 17.276 secst
T3 (FT and PA) | Not applicable
E;ct 0 ‘]
EZ, 1.4
E3, 3.7
E”? 5.0J
deact
Eglaet 5.0
B et ~0.0
T, 0oms
T2, 1.600 secs
T3, 2.900 secs

Table 4: Model parameters and measured values for the Fujitsu disk. Values marked with “1” were picked
so that (Ps . Ts) + Egct — E8,5+1 4+ (Ps+1 . Ts) + Es+1.

deact act
disk should stay at a higher power state only as long as it has consumed the same energy it would
have consumed at the next lower power state, i.e. (P*-T°) + ES,, = E55H 4 (Ps+1-T%) + E&5.
The rationale for this assumption is similar to the famous competitive argument about renting or

buying skis [12].

4.2 Model Predictions

Given the energy and time values of the disk, we can evaluate the policies with our models’ predic-
tions. Figure 1 plots the difference in disk energy relative to EO (left) and the difference in CPU
time relative to EO (right) for each policy, as a function of run-length. Since PA and CO have the
same time behavior as EO, we do not include these policies in the time graph. The figure assumes

our adjusted models.

The energy graph shows that FT and PA consume the most energy out of the energy-conscious

policies. In fact, FT consumes significantly more energy than even the EO policy for run-lengths
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Figure 1: Difference in disk energy (left) and CPU time (right) relative to EO for Fujitsu values, as a
function of run-length. PA and CO have the same time behavior as EO.

between about 9 (7™, i.e. the first inactivity threshold) and 18 seconds. PA consumes more energy
than EO for run-lengths between 10 (7" + T?2,) to 17 seconds. This result is a consequence of the

high energy penalty for re-activating the disk in FT.

DD and CO consume significantly less energy than FT and PA for run-lengths that are longer
than 9 seconds. For a run-length of 26 seconds, for instance, this difference is almost 50%. For
run-lengths that are longer than 17 seconds, DD and CO send the disk directly to sleep state. FT
and PA only reach the sleep state for run-lengths that are longer than about 26 (7' + 72) and 29
seconds (T + T2 + T2,,), respectively. Thus, for run-lengths in these ranges, energy consumption

differences increase slightly.

Note that CO conserves slightly more energy than DD, as the former policy takes advantage of
the (small) energy benefit of pre-activating the disk. This benefit also explains the small difference

between PA and FT for most of the parameter space.

The CPU time graph shows that EO, PA, and CO perform better than DD and FT for all run-
lengths greater than 9 seconds. Just beyond this threshold, EO, PA, and CO become about 15%
better than DD and FT. DD and FT exhibit the same performance for run-lengths in the 9 to 17
seconds range and run-lengths that are longer than 26 seconds. For run-lengths between 17 and

26 seconds, DD exhibits worse performance than FT because 73, > T2

act act*

At a run-length of 50
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seconds, the performance difference between the policies is approximately 5%.

4.3 Benefits for Applications

As mentioned in section 3.6, we group run-lengths with respect to power states to model whole
applications. Under FT, for instance, we divide run-lengths into 3 groups: [1, Tt —1], [T}, T? —1],
and [72, 49999]. As is apparent in this break down, we use 1 millisecond and 50 seconds as the
shortest and longest possible run-lengths, respectively. (We have found experimentally that only a

few run-lengths in our original and modified applications do not fall in this range.)

Figure 2 plots the average power (energy/sec) consumed by applications under DD (left) and
PA (right), as a function of the percentage of run-lengths that fall within the groups associated with
states 1 (idle) and 2 (standby). The run-lengths associated with state 3 (sleep) are the remaining
ones. In both graphs, lower (higher) planes represent minimum (maximum) average power. (\We
will soon explain what the points in the graphs represent.) Recall that CO has roughly the same
power behavior as DD, whereas FT has almost the same power behavior as PA. Consequently, we

do not present results for CO and FT explicitly.

The graphs show that run-length distributions that are skewed towards long run-lengths can
bring average power to a small fraction of that in state 1, regardless of the policy used. Under an
extreme scenario in which all run-lengths are in state 3, i.e. coordinates (0,0,*) in the figures, the
minimum average power is roughly 29% (DD) and 50% (PA) lower than the power consumption
of state 1. Note that the minimum average power corresponds to the energy consumed by run-
lengths of 49.999 seconds plus the energy to re-activate 1 millisecond later, divided by 50 seconds.
In contrast, the maximum average power is the result of run-lengths of about 17 (DD) or 29 (PA)

seconds and re-activating after 1 millisecond.

Another interesting observation is the significant difference between maximum and minimum
consumptions, especially when the percentage of run-lengths in state 1 is large. The largest differ-

ences occur at coordinates (1,0,*). For DD, these discrepancies represent the difference between
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Figure 2: Average power for DD (left) and PA (right), as a function of the percentage of run-lengths in
states 1, 2, and 3. Lower (higher) plane represents min (max) consumption.
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Figure 3: Average % CPU time overheads of DD policy. Lower (higher) plane represents min (max)
overheads.
having all run-lengths in state 1 be 1 millisecond (maximum) or 9 (minimum) seconds. This differ-

ence in the distribution of state 1 run-lengths can cause a factor of almost 2 difference in average

power.

Finally, the figures confirm that DD achieves lower average power than PA across the whole
parameter space. The only exception is when all run-lengths are in state 1, i.e. at coordinates (1,0,%)
in the figures; with this distribution, the two policies produce the same average power. Also, note
that at these coordinates the average power is always higher than P!, due to the significant energy

overhead of the first hidden state.
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Figure 3 illustrates the percentage CPU time overhead under DD. Results for FT are similar
to those in the figure, whereas EO, PA, and CO all exhibit no overhead under our modeling as-
sumptions. The figure shows that minimum overheads are low (< 6%) for most of the parameter
space, whereas maximum overheads quickly become significant as the fraction of run-lengths cor-
responding to states 2 and 3 is increased. Again, we see the importance of the distribution of

run-lengths within each group.

Figures 2 and 3 present the absolute behavior of our policies. However, it is also important
to determine the benefits of our policies in comparison to more established policies such as FT.
DD can achieve significant energy gains with respect to FT for most of the parameter space. Even
the minimum gains are substantial in most of the space. Gains are especially high when most
of the run-lengths are within the bounds of state 3. Reducing the percentage of these run-lengths
decreases the maximum savings slightly when in favor of state 2 run-lengths and more significantly

when in favor of state 1 run-lengths.

In terms of CPU time, PA performs at least as well as FT for the whole parameter space, even
in the worst-case scenario. The maximum gains can reach 15%, especially when the distribution
of run-lengths is tilted towards state 2. Reducing the percentage of these run-lengths in favor of
state 3 run-lengths decreases the maximum savings, but not as quickly as increasing the fraction of

state 1 run-lengths.

Figure 2 visualizes the potential benefit of our policies for the entire range of run-length dis-
tributions. However, we need to determine where applications actually lie. We measured several
applications’ run-lengths by instrumenting the operating system kernel (Linux) on a 667 MHz Pen-
tium I11-based system to compute that information. (We describe the applications and their inputs

later.)

The results of these measurements show that all run-lengths fall in state 1 and, thus, prevent
any energy savings. In terms of the figures we just discussed, this means that applications lie in the

right extreme of the graphs, i.e. coordinates (1,0,*). To accrue energy savings, we need to increase
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run-lengths, moving the applications towards the left side of the graphs. That is the goal of our

proposed application transformations , which we describe in detail in the next subsection.

4.4 Application Transformations

As mentioned above, for non-interactive applications to permit energy savings, we need to increase
run-lengths. We propose that run-lengths can be easily increased by modifying the applications’
source codes. In particular, the codes should be modified to cluster disk read operations, so that
the processor could process a large amount of data in between two clusters of accesses to disk. If
the reads are for consecutive parts of the same file, a cluster of reads can be replaced by a single

large read.

Intuitively and supported by figure 2, one might think that the best approach would be to
increase run-lengths to the extreme by grouping all reads into a single cluster. However, one must
realize that increasing run-lengths in this way would correspondingly increase buffer requirements.
Given this direct relationship, we propose that applications should be modified to take advantage
of as much buffer space as possible, as long as that does not cause unnecessary disk activity, i.e.
swapping. Unfortunately, this approach does not work well for all applications. Streaming media
applications, such as video playing, should have the additional restriction of preventing human-
perceptible delays in the stream. Therefore, a cluster of reads (or a large read) should take no

longer than this threshold. Here, we assume a threshold of 300 milliseconds.

To determine the amount of memory that is available, we propose the creation of a system
call. The operating system can then decide how much memory is available for the application to

consume and inform the application.

The following example illustrates the transformations on a simple (non-streaming) application

based on explicit I/0. Assume that the original application looks roughly like this:
i =1,
while i <= N {

read chunk[i] of file;
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conpute on chunk[i];
=0 + 1;

After we transform the application to increase its run-length:

/1 ask OS how nuch nenory can be used
avai |l able = how _nmuch_nenory();
num chunks = avai | abl e/ si zeof (chunks);
i = 1;
while i <= N {

/'l cluster read operations

for j =1 to mn(i+num_chunks, N)

read chunk[j] of file;
/'l cluster conputation

for j =1 to mn(i+num_chunks, N)
conpute on chunk[j];
i =] + 1;

A streaming application can be transformed similarly, but the number of chunks
of the file to read (numchunks) should be m n(avail abl e/ si zeof (chunks),
(di sk_bandwi dth x 300 mi|lisecs)/sizeof (chunks)) . Regardless of the type of
application, the overall effect of this transformation is that the run-lengths generated by the com-

putation loop are now numchunks times as long as the original run-lengths.

As a further transformation, the information about the run-lengths can be passed to the oper-
ating system to enable the policies we consider. The sample code above can then be changed to

include the following system call in between the read and computation loops:
next R(appl _specific(available,...));

Note that the next run-length has to be provided by the application itself, based on parameters
such as the amount of available memory. Nevertheless, for regular applications, such as streaming
audio and video, the operating system could predict run-lengths based on past history, instead of
being explicitly informed by the programmer or the compiler. However, the approach we advocate

is more general; it can handle these applications, as well as applications that exhibit irregularity.
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Our image smoothing application, for instance, smooths all images under a certain directory. As
the images are fairly small (can be loaded to memory with a single read call) and of different
sizes, each run-length has no relationship to previous ones. Thus, it would be impossible for the
operating system to predict run-lengths accurately for this application. In contrast, the compiler or

the programmer can approximate each run-length based on the image sizes.

4.5 Compiler Framework

Restructuring the code as described in the previous section is a non-trivial task since it requires
an understanding of the performance characteristics of the target platform, including its operat-
ing system and disk subsystem. This knowledge is needed to allocate buffers of appropriate size
(for streaming applications) and to approximate run-lengths. In addition, manual modifications of
source code may introduce bugs and are tedious at best. We have developed a compiler framework
and runtime environment that takes the original program with file descriptor annotations as input,
and performs the discussed transformations automatically, allowing portability across different tar-

get systems and disk performance characteristics.

Our current compiler framework is based on the SUIF2 compiler infrastructure [20] and takes
C programs as input. The user may declare a file descriptor to be st r eaned or non- st r eaned
using declarations of the form: FI LE *streamedfd and FI LE *non-streamedfd. If no
annotation is specified, 1/O operations for the file descriptor will not be modified by the compiler.
The compiler propagates file descriptor attributes across procedure boundaries, and replaces every
original 1/0O operation of the file descriptor in the program with calls to a corresponding buffered
I/0 runtime library.

In cases where procedures have file descriptors as formal parameters, different call sites of
the procedure may use st reaned and non- st r eanmed actual parameters, making a simple
replacement of the original file 1/0 operation within the procedure body impossible. Our current

prototype compiler introduces an additional parameter for each such formal file descriptor. The

22



additional parameter keeps track of the attribute of its corresponding file descriptor. Using the
attribute parameter, the compiler generates code that guards any file 1/0 operation of the formal
parameter, resulting in the correct 1/0 operation selection at runtime. We are investigating the

benefits of procedure cloning as an alternative strategy.

The current runtime library contains modified versions of r ead and | seek. The library calls
preserve the semantics of the original 1/0 operations, and in addition: (1) Measure the perfor-
mance of the disk through user-transparent runtime profiling; (2) Measure the data consumption
rate by the CPU processing of the disk data; (3) Implement buffered 1/0 through allocation and
management of user-level buffers of appropriate sizes; and (4) Notify the operating system about

the expected idle times of the disk (run-lengths).

The main goals of the profiling are to estimate future run-lengths and to determine the maximal
buffer size that does not violate the performance constraints of a streaming application. The buffer
size should be maximal in order to allow the longest possible disk hibernation time between suc-
cessive disk accesses. Sizing the buffer involves approximating the disk’s bandwidth. Our profiling
subsystem uses the cost of individual reads from the application to produce a first approximation
of the bandwidth. This approximation is used to allocate a test buffer that allows the measurement
of the runtime costs of larger reads. From these costs, our profiling subsystem can compute the
bandwidth of the disk on larger accesses. The final buffer size is set to the measured large read
bandwidth (bytes/second) times the performance constraint (seconds). For a disk where reads of
n blocks are much faster than » individual block reads, the final buffer size will be significantly
larger than the test buffer size. Figure 4 illustrates the general transitions between these profiling

phases. Next, we detail the actions in each phase.

First phase. The first phase (phase 1 in figure 4) measures disk access times to satisfy regular
read requests by the application. Accesses satisfied by the file system buffer cache are ignored in
order to compute a lower bound of the disk bandwidth. To detect and ignore the cache fetches,

the compiler relies on the time difference between a cache hit and a miss. A buffer cache hit
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Figure 4: Phase transition diagram for read requests.

is assumed to take several microseconds, whereas a cache miss (and subsequent disk access) is

assumed to take milliseconds.

A global counter keeps track of the number of disk reads measured during the initial profiling
phase. The number of reads needed to reach a steady-state measurement depends on the amount of
data requested by each read operation. Our current implementation takes this number as an input.
However, we believe that the profiler can derive this number based on a histogram of read access
times. Once a suitable number of reads have been measured, the average disk bandwidth can be

computed, which is a lower bound on the disk’s actual bandwidth.

Second phase. In the second phase (phase 2 in figure 4), several calculations from the previous
measurements lead to two crucial values. First is the lower bound estimate mentioned above.
This lower bound corresponds to small reads for which the disk latency represents a significant
portion of the access time. However, we need to estimate the disk’s bandwidth for such sustained
reads where data transfer, rather than disk latency, represents the dominant fraction of access time.
Thus, the lower bound is used in calculating the size of a test buffer, as large as the acceptable
application delay allows, for the purpose of measuring the disk’s sustained transfer rate, i.e. the
disk’s bandwidth on large reads. The final buffer size is determined by multiplying the sustained

transfer rate with the acceptable delay.
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The second crucial value is the data consumption rate. The first phase recorded the number of
bytes read and the time taken by the CPU to consume them. This gives an average number of bytes
per unit of time. With the final buffer size and this average consumption rate, we can estimate how

long the disk will be idle after the large reads.

Third phase. The third phase (phase 3 in figure 4) is considered the steady state and usually con-
sists of satisfying data requests by copying blocks of data from the large buffer to the application’s
buffer. When the data in the large buffer have been consumed, the buffer is refilled from disk, and

the operating system is informed of the disk’s expected idle time.

The runtime profiling strategy has been designed to be robust across different disk architectures
and prefetching strategies. It involves profiling the first few disk reads to determine averages for
the bandwidth of the disk and the run-lengths. Since the profiling occurs during actual program ex-
ecution time, the results may be more precise as compared to profiling as part of a manual program
transformation process, which is typically done off-line and only once, with the resulting parame-
ters “hard-coded” into the transformed program. The runtime overhead of our profiling strategies
is negligible and does not affect the user-perceived application performance. We present experi-

mental results comparing hand-modified and compiler-transformed applications in section 4.7.

Since the source code of the runtime library is available to the compiler, advanced interpro-
cedural compiler transformations such as procedure inlining and cloning can enable further code
optimizations. For instance, instead of copying data from the compiler-inserted buffer into the
buffer specified in an application-level read operation, the compiler may eliminate the copying by
using a pointer into the compiler-inserted buffer. The safety of these optimizations can be checked
at compile time. Manually transformed programs can also benefit from advanced compiler opti-

mizations.

Our compiler and runtime approach compares favorably against a pure operating system-based,
“buffered” 1/O approach, in that the latter would require expensive system calls for each original

application-level 1/0O operation. In addition, such an approach may not work well if the files are

25



accessed with a large stride, or accessed irregularly. We are also investigating compile-time anal-
yses and optimizations to prefetch “sparse” file accesses into a “dense” buffer, and to determine a

working set of active file blocks that should be buffered for the non-sequential file accesses.

4.6 Experimental Methodology

To support and validate our models, we experimented with real non-interactive applications run-
ning on a Linux-based laptop. We implemented FT, DD, PA, and CO in the Linux kernel. FT is
implemented with a kernel timer that goes off according to the 7't and 72 thresholds. When the

timer goes off, the kernel sends the disk to the next available lower power mode.

DD, PA, and CO were implemented by creating a system call to inform the kernel about the
next run-length. With that information, the kernel can effect DD by determining f’ according to
our model and putting the disk in that state. The kernel can also effect PA by starting a timer to go
off when the disk should be re-activated, again according to our model. Recall that PA assumes FT

for energy conservation. The kernel implements CO by combining PA with DD, rather than FT.

Unmodified non-interactive applications usually exhibit very short run-lengths; so short that
the disk can never be put in low-power state. To achieve energy gains, we need applications with
longer run-lengths and that call the kernel informing it about their approximate run-lengths. To
evaluate the full potential of these transformations, we transformed our applications manually at

first.

To determine a reasonable read buffer size for a laptop with 128 MBytes of memory, we deter-
mined the amount of memory consumed by a “common laptop environment”, with Linux, the KDE
window manager, 1 Web browser window, 1 slide presentation window, 1 emacs window, and 2
xterms. To this amount, we added 13 MBytes (10% of the memory) as a minimum kernel-level file

cache size. The remaining memory allowed for 19 MBytes of read buffer space.

The transformed streaming and non-streaming applications exhibit the run-length distributions
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Application Input Modified Rs
{s1,52,s3}
MP3 player 11.9-MByte song {0,0, 1}
MPEG player 12.75-MByte movie {0.17,0.17, 0.66}
Image smoother | 30 images, 2.46 MBytes each {0,0, 1}
MPEG encoder 800 files, 115 KBytes each {0.17,0.33, 0.5}
Secure ftp (sftp) 60-MByte file over 10-Mbit Ethernet | {0, 0.25, 0.75}
GNU zip (gzip -9) | 357-MByte file {0.12, 0.33, 0.55}

Table 5: Applications, their inputs, and the grouping of run-lengths in their modified versions (assuming
CO states). We consider two streaming (top) and two non-streaming applications (bottom).

listed in the third column of table 5. The si groups in the table are defined with respect to the
run-lengths delimited by the inactivity thresholds of CO. From left to right, each of the values
within the braces represents the percentage of run-lengths corresponding to states 1, 2, and 3. For
example, a distribution of run-lengths of {0,0,1} means that we measured all run-lengths to be
long enough to take the disk to the sleep state in a cost-effective way. The run-length distributions
for the original versions of our applications are always {1,0,0}, i.e. no run-length is long enough

to take the disk to a low-power state.

To understand the effect of operating system prefetching, we execute experiments with and
without this optimization. We use the standard prefetching policy of Linux, in which a variable-
size prefetch buffer is associated with each open file. The buffer grows up to 128 KBytes, if the file
is being read sequentially. It shrinks if reads are not sequential. Prefetching is done synchronously
if, upon a read, the file pointer is outside of an already prefetched block and the block being
requested is not in memory. Prefetching is done asynchronously if, upon a read, the file pointer is
on an already prefetched block. In this case, Linux will request the next window of blocks, up to

the 128-KByte limit.

The disk energy consumed by the applications is monitored by a digital power meter that sam-
ples the supply voltage and the current drawn by the disk about 38K times per second. The meter
provides averaged power information 3-4 times per second to another computer, which logs it for

later use.
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Figure 5: Energy and time results for MP3 player (top left), MPEG player (top right), image smoother
(middle left), MPEG encoder (middle right), sftp (bottom left), and gzip (bottom right).
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4.7 Experimental Results

Figure 5 presents the measured and modeled results for our applications. Each graph plots two
groups of bars, disk energy (left) and CPU time (right), with results for all policies. The three
leftmost bars in each group (labeled “UM?”) correspond to the original, unmodified applications.
From left to right, the three bars present the modeling result (adjusted, in the case of energy), the
experimental result (highlighting the fraction due to actual disk accesses), and the experimental
result in the presence of prefetching. All other results in each graph correspond to the transformed
applications under our energy management policies. In the EO and FT results, run-lengths are
extended. In the DD, PA, and CO results, run-lengths are extended and informed to the operating

system. Note that we do not present prefetching results for all policies.

We computed the modeling results using the actual run-lengths observed during the appli-
cations’ runs. The modeling results predict behavior in the absence of prefetching; prefetching
violates the assumption that disk accesses are blocking and, thus, renders our models and instru-
mentation inaccurate. We do not present modeling results for the unmodified MPEG encoder

because it produces more run-lengths than our log data structure in the kernel can store.

Energy. We can make several interesting observations from these graphs. Let us start by consid-
ering the results without prefetching. First, the graphs demonstrate that our adjusted models can
indeed approximate the behavior of the applications in all cases. Although the simple models’
results are not shown explicitly, we find that the adjusted models can predict energy/time more
accurately than the simple models. The difference between their predictions approaches a factor of
2 in some cases, namely energy for the unmodified MP3 and MPEG players. These results suggest
that modeling and/or simulation studies of device energy can lead to misleading observations.
Second, the graphs demonstrate that the application support indeed conserves a significant
amount of energy in all cases. The transformation to increase run-lengths reduces energy con-
sumption even under EO, an energy-oblivious policy. When we execute the modified applications

in the presence of FT, energy consumption is further reduced in most cases. The exception here is
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the MPEG player, for which run-lengths are exactly in the range where FT performs worse than

EO. PA conserves either a little more or a little less energy than FT, as one would expect.

Exploiting run-length information provides even more gains, as shown by the DD and CO
results. Modified applications under DD and CO can consume as much as 89% less energy than
their unmodified counterparts, as in the case of the MP3 player. Our worst result is for gzip, for
which the energy savings is 55% (CO). The average disk energy savings is 70%. The CO policy
usually consumes a little more energy than DD, since run-length mispredictions may cause the disk
to be idle longer than necessary under CO. The same problem is not as severe for PA (percentage-

wise) because re-activations under this policy usually come from a shallower state than in CO.

Execution time. Still assuming no prefetching, we observe that the modeling results are again

accurate; they suggest the same behaviors and trends as the experimental results.

We can also observe that UM and EO exhibit roughly the same performance, showing that the
overhead of extending run-lengths in the way we propose is negligible. FT and DD usually exhibit
the worst performance, as one would expect. The disk re-activations are the main cause for the
performance degradation under these policies. Furthermore, the figures show that PA and CO are
effective at limiting performance degradation. On average, performance under these policies is
3% worse than under EO. Gzip is the application that exhibits the largest degradation, 8%. This
degradation is a consequence of a few run-length mispredictions that cause disk re-activations in
the critical path of the computation. This problem can be alleviated by informing slightly shorter
run-lengths than we predict to the operating system or having the operating system itself provide
the slack. The amount of slack cannot be too significant however, to avoid increasing the energy
consumption excessively.

Prefetching. In terms of performance, prefetching has a negligible effect. The reason is that,
for non-streaming applications, our transformations operate on a large (19-MByte) buffer so any
additional prefetching the operating system can perform is unlikely to make a noticeable difference.

For streaming applications, the performance is mostly determined by the stream rate which is
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Figure 6: Energy and time for compiler versions of MP3 player (top left), MPEG player (top right), and
sftp (bottom).

virtually independent of the performance of disk accesses. Finally, the disk access time for all

applications corresponds to a small fraction of the total execution time.

In terms of energy, prefetching does have an effect on the unmodified version of three applica-
tions: MP3 player, MPEG player, and gzip. These three applications access data sequentially and
in small chunks in their original form. Because prefetching brings larger chunks into memory, it
reduces the number of accesses that actually reach the disk, thereby reducing the energy consump-
tion. Recall that a disk access consumes significantly more energy than any low-power state. This
effect is not as clearly pronounced for other applications. The limited implications of prefetching

is the reason why we do not present all prefetching results in our figures.

Compiler framework. Figure 6 presents a comparison of the hand-modified (“hm”) and compiler-
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Application Phase 1 | Phase 2 | Phase 3 | Total
MP3 player 21.1 0.2 403.2 | 4245
MPEG player 7.2 0.2 98.8 | 106.2
Secure ftp 8.9 0.2 222.6 | 231.7

Table 6: Time (in seconds) spent during each phase.

based (*“cc”) results for the MP3 and MPEG players (streaming applications) and sftp (a non-
streaming application). We show a sampling of the amount of time spent in each phase of our

compiler and runtime framework in table 6.

The results show that the energy consumption and performance of the hand-modified and
compiler-based versions are nearly identical in the vast majority of cases. The framework is able
to achieve these results by profiling applications for a relatively short amount of time, at most 5%
of the execution time for MP3 player. This shows that our framework is able to accurately measure
the disk performance without significant energy or runtime overhead, effectively manage the read

buffers, and accurately predict the run-lengths.

5 Conclusions

This paper studied the potential benefits of application-supported device management for optimiz-
ing energy and performance. We proposed simple application transformations that increase device
idle times and inform the operating system about the length of each upcoming period of idleness.
Using modeling, we showed that there are significant benefits to performing these transforma-
tions for large regions of the application space. Using operating system-level implementations and
experimentation, we showed that current non-interactive applications lie in a region of the space
where they cannot accrue any of these benefits. Furthermore, we experimentally demonstrated
the gains achievable by performing the proposed transformations. We also proposed a compiler
framework that can transform applications automatically. Our results showed that this prototype

compiler can achieve virtually the same results as when we hand-modify applications. Overall,

32



we found that our proposed transformations can achieve significant disk energy savings (70% on
average) with a relatively small degradation in performance (3% on average). Even though our
transformations target device energy management, they can potentially be combined with tech-
niques that conserve processor energy. In fact, assuming that a small performance degradation is
acceptable in exchange for high energy savings, processor voltage/frequency scaling may provide

additional gains for our applications.

Finally, it is important to mention that, although this paper considered one particular disk, the
transformations and compiler framework we propose should be directly applicable to a wide variety
of disks. In fact, the runtime profiling in our compiler was designed to be used transparently across
different disks. The operating system modifications we performed are also directly applicable to

any disk, provided that the disk parameters are made available to the kernel.
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