Toward an Evaluation Infrastructure for Power and Energy Optimizations

Chunling Hu

Daniel A. Jiménez

Ulrich Kremer

Department of Computer Science
Rutgers University
Piscataway, NJ 08854
chunling, djimenez, uli @cs.rutgers.edu

Abstract

Execution-driven simulators are often used for
power/energy and performance evaluation. Simula-
tors can provide semantic details but they provide
insufficient speed and accuracy for compiler and OS re-
search. Physical measurement is fast and objective
but lacks a semantic connection between the mea-
surement result and the evaluated program. The
objective of our research is to bring together the ad-
vantages of simulation and physical measurement to
build an infrastructure for power and energy optimiza-
tion. Power and energy behavior is obtained through
physical measurement. Simulation is used for ob-
serving the connection between power and energy
behavior and the evaluated program. Our prelimi-
nary results demonstrate the ability of this infrastruc-
ture to capture detailed power behavior of any region
of a program. To simplify the power/energy evalua-
tion of programs with long execution times and over-
come the limitation of physical devices, we propose
using the SimPoints methodology developed by re-
searchers at UC San Diego to find representative
slices of a program. Through simulation, we vali-
date the feasibility of the SimPoint idea in simplifying
power/energy evaluation. We expect that this infrastruc-
ture will help researchers in OS/compiler power/energy
optimization to evaluate their optimizations more ef-
ficiently and observe more optimization opportuni-
ties.

1. Introduction

Process technology increases transistor density by
about 35% per year. The effect of increasing die size and
transistor density causes a growth rate in transistor count
of about 55% per year with a commensurate improve-
ment in transistor performance. High transistor density

has supported the emergence of 64-bit microprocessors
and many innovations in pipelining and caches [11]. At
the same time, power management has emerged as a
major challenge for device scaling. Most of the power
dissipation of CMOS microprocessors comes from the
switching (dynamic) power of transistors, which can be
calculated as

P=fxCxV} (D

Here, f is the switching frequency, C' is the load ca-
pacitance of the transistor and Vg4 is the voltage. De-
creased feature size of a transistor means a decrease in
its load capacitance. However, the increases in the num-
ber of transistors and frequency dominate the decreases
in load capacity and voltage, resulting in power dissipa-
tion growth. Power is likely to become the major limita-
tion in the development of computer architecture [11].

Simulators are often used to evaluate the power and
performance of programs. By simulating the execution
of a program on some platform, we can get very de-
tailed program behavior in both power and performance.
Simulation is very important in the early stage of com-
puter architecture design since no concrete architecture
is available. However, simulators are very slow and in-
accurate compared with physical measurement. In the
OS and compiler communities, benefit analysis typi-
cally rely on physical measurement in order to get ob-
jective power/energy behavior with time cost propor-
tional to program execution time. However, physical
measurement results alone are often not able to explain
the observed power/energy behavior, i.e., do not pro-
vide a semantic feedback. It is our goal to bring together
the advantages of simulation and physical measurement
to build an evaluation infrastructure for OS/compiler
power/energy optimizations. By combining the results
of physical measurement and simulation, the user can
get an objective power/energy measurement with a se-
mantic connection to the evaluated program.

For long-running programs it is hard to get very de-
tailed power behavior of the whole program through
physical measurement because of hardware limi-
tations. Even with energy simulation, it is time-
consuming to simulate the whole program. We plan
to use the concept of SimPoints [15] in our infras-
tructure to overcome hardware limitations and sim-
plify the power/energy measurement/simulation. That
is, we find representative slices of a program and per-
form measurement/simulation only on these slices
to get the power/energy behavior of the whole pro-
gram.

The rest of the paper is organized as follows: Sec-
tion 2 describes power/energy simulators and the Sim-
Point idea. Section 3 discusses our current evaluation in-
frastructure and preliminary results. Section 4 describes
the validation of the feasibility of the SimPoint idea in
power/energy evaluation through simulations. Section 5
gives directions for future work, and Section 6 concludes
the paper.

2. Related work
2.1. Power Evaluation Techniques

In simulation-based power evaluation methods, the
system is abstracted into various components. The en-
ergy consumption of a program is estimated as the sum
of the energy consumption of all these components.
Simulators can be classified according to their levels of
system and component abstraction. They target different
levels of detail and make different trade-offs between
simulation time and accuracy. Most simulators are pa-
rameterized so they can be used to estimate the energy
consumption of different system configurations. Simu-
lators are very important in the early stages of architec-
ture design and evaluation. Furthermore, many simula-
tors can give details at a very fine level of semantic gran-
ularity.

2.1.1. Transistor-level These simulators character-
ize models of transistors and estimate voltage and
current behavior over time. Power dissipation of tran-
sistors comes from three sources: switching power,
short-circuit power, and leakage power. Such sim-
ulation is time-consuming but useful in integrated
circuit design. Transistor-level simulators are not suit-
able in evaluating power consumption of large programs
on complex systems.

2.1.2. Cycle-accurate = Microarchitecture-level A
microarchitecture-level simulator simulates the ex-
ecution at the level of individual cycles, allowing

to keep track of power behavior changes across cy-
cles. They are often used for simulations of modern su-
perscalar processors. Three examples of cycle-level
simulator are Wattch [5], SimplePower [18] and
Sim-Panalyzer [1]. We use Sim-Panalyzer in our re-
search to estimate the power dissipation of the bench-
marks.

2.1.3. Instruction-level Instruction-level simula-
tors provide coarser power behavior than the above two.
The simulation is based on the instruction-level en-
ergy profiling of the instruction set of the target
processors and the assumption that the energy con-
sumption of an instruction is mostly independent of the
addressing mode or operands. Instruction-level sim-
ulators are normally faster than cycle-level simula-
tors and useful when only total energy consumption
is needed. One instruction-level simulator is Joule-
Track [17].

2.1.4. System-level Hardware component system-
level simulators characterize the energy consumption of
each system component in different states. The simula-
tor records the transitions between states and the time
each component spends in each state during the sim-
ulation and calculates the energy consumption of the
whole program. Such simulators do not provide de-
tailed power behavior of a program, but they are
useful for component selection and system partition-
ing during an architecture design. An example is the
simulator from Duke University [6]. It is an exten-
sion of POSE, a palm OS Simulator.

There are also some software component system-
level evaluators. PowerScope [8] is a time-driven statis-
tical sampler that uses samples from a digital multime-
ter. An energy-driven statistical sampler from Compaq
is similar to PowerScope except that the sampling pe-
riod is determined by energy quanta.

SoftWatt [10] is the first simulator to target the com-
plete system power profile of a high-end system. It ex-
tends SimOS [14] with validated analytical energy mod-
els for hardware components. This simulator identifies
power hotspots in system components, and captures the
relative contribution of the power profile to the user and
kernel code and identifies power-hungry OS services.

ECOSystem [19] is a modified Linux that manages
energy as an OS resource. Parameters of its “currentcy
model” can be changed to support different platforms.

Isci et al. [12] propose a coordinated measurement
approach that combines real total power measurement
with performance-counter-based per-unit power estima-
tion. This is useful for dynamic power/energy manage-
ment but incurs runtime overhead due to the access of
performance counters. This overhead may be responsi-

ble for a significant portion of the observed power dis-
sipation, in particular for short programs or program
regions. Our work is different from this approach be-
cause our objective is an evaluation infrastructure for
OS/compiler optimizations. Our infrastructure can get
the power measurement of any small region of a pro-
gram as well as the power behavior of a long program.
Furthermore, even through [12] provides power break-
down for CPU components, their is no semantic connec-
tion between the measurement result and the measured
program, which is important for observing power/energy
optimization opportunities and will be an important con-
tribution of our infrastructure.

2.2. Disadvantages of Energy Simulators

The above simulators have some common features.
Energy models for various components are character-
ized before the evaluation and energy consumption eval-
uations are done through looking up values in many
tables by the simulator. The higher the precision is,
the larger the tables are. So speed is usually decreased
with the increase in precision. Simulator are valuable
for power and energy estimation of unavailable archi-
tectures. For OS and compiler level power optimization
on available architectures, physical measurement can be
used for evaluation.

Performance modeling is subject to many sources of
error [4]. Modeling errors are from the incorrect cod-
ing of the desired functionality. Desikan ef al. measured
the experimental error in microprocessor simulation and
showed that the error in common simulators is often
larger than the performance gains yielded by new ar-
chitecture ideas reported in the literature [7]. From the
construction of power simulators, we can see that power
simulators are also subject to the errors mentioned in [4].
Some tables are usually simplified to accelerate simula-
tion. There may be mismatches between reality and the
simulation of the program execution. The effect of the
OS is not considered in many simulators. All of these is-
sues make accuracy a problem of simulators. Ghiasi et
al. compared two architectural power models, the Cai-
Lim power model and Wattch, and found that these mod-
els disagree on the efficacy of the design choices in each
experiment and do not always produce statistically sig-
nificant results [9].

The disadvantages of power simulation and physical
measurement show that we need a faster, more precise
power and energy evaluation infrastructure to correctly
reflect the power behavior of a program and evaluate the
benefit of an optimization. This is the motivation of our
research.

2.3. The SimPoint Idea — Off-line Phase Clus-
tering

Execution of a program falls into repeating behaviors
called phases. If we can identify these phases then we
can find segments of the program execution with sim-
ilar behavior and focus our simulation or measurement
only on several representative segments to get the be-
havior of the whole program execution. Sherwood et al.
proposed off-line Phase Clustering Analysis and used it
in finding simulation points of programs in their Sim-
Point research [16].

In SimPoint, a program execution is partitioned into
intervals with a fixed number of instructions. Intervals
with similar behavior are clustered into a phase. Ba-
sic Block Vector(BBV) profiling is used to collect a
sort of fingerprint of each interval for off-line classi-
fication. This fingerprint is the number of instructions
executed for each basic block during the interval. The
phase behavior can be found by examining the ratios in
which different regions of code are executed over time
[15]. One cluster corresponds to a phase. One interval
for each phase is chosen as a simulation point and the
program behavior can be estimated from the simulation
of all the simpoints. They validated this method on the
SPEC2000 benchmarks by estimating their instructions-
per-cycle (IPC), cache miss rate, branch misprediction
rate etc[2].

We plan to borrow the SimPoint idea to simplify our
physical measurement and enable the physical measure-
ment of programs with long execution times in spite of
the hardware limitations. We have validated the feasibil-
ity of this idea in power/energy evaluation through sim-
ulation on some benchmarks.

3. Evaluation Infrastructure
3.1. Current State of the Infrastructure

As depicted in Figure 1, our evaluation infrastruc-
ture has three components: a Skiff board(a Compaq Per-
sonal Server PCB with a StrongARM SA110 CPU and
32MB of SDRAM), a Tektronix TDS3014 DPO oscillo-
scope with a TDS3TRG advanced trigger module, and
a dedicated data-acquisition Linux machine. The Skiff
board has separate power planes and current measure-
ment points for CPU and memory. The measured pro-
gram runs on the Skiff board. The oscilloscope mea-
sures the current or voltage of the components(CPU,
memory) of the Skiff board or the whole board. The
data-collecting machine communicates with the oscillo-
scope to gather data and does offline analysis. Sampling
is done by the oscilloscope and the data-acquisition ma-

data acquisition
computer

network
connection
oscilloscope
A s -
A Q| trigger signal
D@ [\
%
current voltage
readings readings f
/

Figure 1. Prototype power measurement
infrastructure for the StrongARM based
Skiff board

chine only communicates with the oscilloscope.So there
is no interference between the measured program, sam-
pling and data collecting. The accuracy of the result is
high.

3.2. Usage and Measured Parameters of Oscil-
loscope

The TDS3014 oscilloscope has four channels. Users
can control its acquisition mode, record length, trigger
mode, data encoding and other configurations through
our user-level API. TDS3014 has two sample acquisi-
tion modes:

e Normal : record length=10,000 points
e Fast trigger: 500 points

Record length is the number of points that comprise a
complete waveform record. It determines the amount of
data that can be captured with each channel. In our ini-
tial work, we use fast trigger mode to collect the power
behavior of the whole measured program. There are two
problems: 1) The oscilloscope keeps acquiring samples
all the time. It is hard to determine the beginning and
the end of the measured program. 2) The communica-
tion cost to collect 500 samples from the oscilloscope
to the data-acquisition machine is much longer than the
time used to generate these samples when high resolu-
tion is used. In our experiments, the communication cost
is usually about 135ms. This means, that if we adjust
the oscilloscope to generate 500 samples in 135ms, the
communication speed of the data acquisition machine is
fast enough to retrieve all data from the buffer before
the buffer is overwritten. For a 233Mhz machine such
as the Skiff board, each sample covers about 62910 cy-
cles. This resolution may not be good enough if we want

to have a closer look at the power behavior of the mea-
sured program. However, if we use a higher sampling
rate, some samples will be lost due to the overwriting
mechanism of the sample buffer.

To solve the first problem we use the trigger mod-
ule of the oscilloscope. In this mode, the oscilloscope
starts sample acquisition only after a trigger event hap-
pens. The acquisition is stopped after an entire record is
obtained. The trigger starting the measurement is gener-
ated by setting a pin on the Skiff board to a high volt-
age. We call this pin the trigger pin. After the measured
part, the trigger pin is set to lower voltage to indicate
the end of the measurement. Through running some spe-
cially designed micro-benchmarks, we determined that
the delays of setting the high voltage and low voltage are
20ns and 47ns, respectively. Our current prototype user
interface allows the specification of program regions by
inserting compiler pragmas to mark the start and end of
the region to be measured. Trigger generation code is in-
serted into the source code automatically. The execution
of the measured program region is not affected, allow-
ing non-intrusive power/energy observations.

Although the normal mode can help us identify the
beginning and the end of the measured program, it is
still hard to get the power behavior in high precision for
programs with long execution time due to the high com-
munication cost. A larger memory for the oscilloscope
can help, but the problem persists if we want higher pre-
cision. This is why we plan to use the SimPoint idea
to find representative slices of a program and get power
evaluation for the whole program based on the physi-
cal measurement of the selected slices.

3.3. Measurement Example

Figure 2 shows a very simple program with a loop.
Unrolling the loop 8 times and compiling it with GCC
yields a new version, version A, which has a basic block
with 16 loads followed by 16 additions. We reschedule
the instructions of the assembly of version A by hand to
get two other versions, version B and version C. Then
we use GCC to compile them into executables. Table 1
shows the instruction schedule for each version.

Figure 3 shows the measured CPU current for the
StrongARM SA110 processor (2.0V, 233MHz). The line
marked “trigger” represents the trigger signal for the os-
cilloscope. At the beginning and end of the program re-
gion of interest, the trigger pin is set to high and low
voltage, respectively.

In Figure 3, we see what we expect for the current be-
havior of the program: one cache miss every 8 iterations
of the original version. Version C, the alternating sched-
ule of memory and CPU instructions, leads to the short-

| Version | Instruction Order |
Original 2 loads followed by 2 additions in each loop, but 8 times of loops compared to other
versions
Version A 16 loads followed by 16 additions
Version B 2 loads, followed by 2 additions, followed by 14 loads, followed by 14 additions
Version C alternating groups of 2 loads, followed by 2 additions

Table 1. Instruction order of each version of the loop

CPU current(A)

CPU current(A)

Original Version(avg power=0.63W energy=37.69uJ)

T T T T T T T T T T T T T T 1
0.6 cpu current —
- " mgwf
0.5 - b
0.4 - b
0.3 b
0.2 J\A b
0.1
) S S S T B
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
time(us)
Version B(avg power=0.43W energy=14.53uJ)
m T T T T T T T T T T T T T T 1
0.6 cpu current ——— —
trigger ——
0.5 - b
0.4 - b
0.3 b
0.2 - b
0.1 b
0 L1 lowl 1l de)

0 4 8 12162

TR R N R
0 24 28 32 36
time(us)

40 44 48 52 56 60 64

Version A(avg power=0.48W energy=19.00uJ)

T T T T T T T T T T T T T T 1T
0.6 - cpu current -
trigger ——
<
5
=
3
=]
&
]
Qlwdd 1111 1 e
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
time(us)
Version C(avg power=0.38W energy=12.19uJ)
T T T T T T T T T T T T T T T
0.6 F cpu current ——
o " trigger ——
0.5 b
)
z 04 b
L
=
3 03[4
2
O 02
0.1~ b
0 T R Y| PYPPY VPO YA SUOS PV OO PV
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
time(us)

Figure 3. Physical measurement results for the four versions in Table 1.

int const n=1024;
unsigned long a[n], b[n
unsigned long accu=0;

for(i=n—-256; i<n; i++)
accu+=al[i]+bl[i];

Figure 2. A simple program with loop. The
part in the gray box is measured.

est execution time, the lowest energy consumption and
the smoothest power dissipation profile. Choosing this
schedule over the alternatives will lead to a fast program
with low peak CPU power dissipation and small varia-
tions in power dissipation.

For comparison, we also simulate the same programs
using Sim-Panalyer, a cycle-accurate architecture-level
ARM power simulator. Since it is non-trivial to identify
loops within an executable, we simulate the power dis-
sipation of the whole program. Only the loop is differ-
ent in different simulations, so we can say that the dif-
ference among simulation results are from our modifi-
cation to the loop. Most of the architectural configura-
tion values used in our simulation experiments are from
the StrongARM v4 data-sheet. Others are from the de-
fault configuration provided by Sim-Panalyzer. We use
the power configuration file provided by Sim-Panalyzer
but change the frequencies to 233Mhz. Table 2 gives the

| Version | power | cycles |
Original 1.000 1.000
Version A 0.653 0.644
Version B 0.668 0.684
Version C 0.667 0.683

Table 2. Simulated power and cycles for
the unrolled loop in Figure 2.

simulation results for the four versions of the program.
Both the power dissipation and simulated cycles are nor-
malized by the results of the original version.

From Table 2, we can see that version A, B and C
all give better results compared to the original version
without respect to power dissipation or execution cy-
cles. However, based on the simulation result, Version
A is the best of the four versions. This is different from
the observation we observe from the measurement re-
sult. Furthermore, even through we simulate the whole
program, the power dissipation of the loop is a big part
of that of the whole program based on the comparison of
the simulation results of the original version and version
A. But we can not see significant difference between the
simulation results of version B and C, which also dis-
agrees with the physical measurement result. It is there-
fore hard to know when to trust the obtained simulation
results.

4. Usage of the SimPoint Idea

Sometimes it is necessary to measure the power of
the whole program in fine precision. Even though we
can run the program many times to measure the power
behavior of one small slice in each running and com-
bine the results from the slices to get the final answer, it
is time consuming and dealing with the overlap between
two slices is non-trivial. In order to simplify the mea-
surement work, we use off-line phase classification from
SimPoint[16] to find representative intervals to simu-
late/measure.

4.1. Off-line Phase Clustering Analysis

The selection of simpoints includes the following
steps:

1. Basic Block Profiling gets the basic block vec-
tor(BBV) for each interval with a fixed number of
instructions.

2. BBV Dimension Reduction reduces the dimen-
sion of BBV to speedup the third step.

3. Phase Classification Through K-Means Cluster-
ing identifies the phases.

4. Picking Simulation/Measurement Points picks a
representative from each cluster.

4.2. Feasibility Validation of the SimPoint Idea

In order to validate the suitability of the selected
points from the above method, we choose 9 benchmarks
from Mediabench [3] and compile them into ARM ex-
ecutables. We extend sim-outorder of SimpleScalar to
perform BBV profiling on ARM benchmarks. The orig-
inal SimPoint algorithm is also extended to support
fixed number of simpoints instead of choose the best
one among several numbers so that we can see the im-
pact of the number of simpoints on the error rate of
power/energy estimation. We then explore the error rate
of each benchmark in a 3-dimensional space: interval
size, number of simpoints, and error rate.

The following steps are performed on each bench-
mark:

1. Compile the benchmark locally on the skiff board
with extended options -static and -msoft-float.

2. Run the modified sim-outorder on the benchmark
to get BBVs.

3. Run the BBV analysis program on the BBVs from
step2 to get the simpoints and their corresponding
weights.

4. Run sim-panalyzer on the simpoints from step3.

5. Calculate whole-program power estimation based
on the power values from step4 and the weights
from step2.

6. Calculate the error rate.

Figure 4 shows the power behavior of jpegencode and
the clusters obtained from the off-line phase clustering.
The curve is the power behavior of the benchmark. Each
power value is the simulated power dissipation of a fixed
number(10000) of continuous instructions, so the x axis
does not represent execution time precisely. The num-
bers on the primary x axis are phase numbers for the
intervals of jpegencode when 5 phases are identified by
the off-line phase classification algorithm. Intervals with
the same phase number are classified into the same clus-
ter and one of them is chosen as the representative of the
phase. The numbers on the secondary x axis are phase
numbers when 10 phases are identified. We can see that
intervals from the same phase have similar power behav-
ior. When 10 simpoints are simulated or measured, we
get more representative slices of the program than when
5 phases are identified. This is evident especially for the
second half of the program. When there are 5 phases, the

Phase Number (10 simpoints)

19777483633
T, T 0 1, T T T T 1

10 6 101010
T T T 1
power

2222222225 36363
T T T T J T T T 1 T T T 1

[T R I N I N T
1 444433333
Phase Number (5 simpoints)

[T Y Y O B [I T T O R
22222222251 3333333333

Figure 4. Power behavior and phase classification for jpegencode.

intervals in the second half are clustered into the same
phase, in spite of the power peaks in this part. When
there are 10 phases, intervals with power peaks are clus-

tered into a separate phase and the peaks can be found matRhERtn
. . . . 5 = B adpcmencode
through the simulation or measurement of the simpoints. = s
Phase 10 and phase 3 have very close power behavior, 4 -
which means 10 simpoints are too many in this case. B spic

We also explored the impacts of different numbers of
simpoints and different interval sizes. For most bench-
marks, when the number of simpoints is in the range
of 1 to 10, the error rate decreases with the increase in
the number of simpoints. When the number of simpoints
is larger than 10, the error rate does not change signifi-
cantly. An interval size of 1 million instructions is good
enough for the benchmarks. For some benchmarks, we
get the same error rate when smaller interval size is used,
and the simulation time is largely reduced. It is hard to
say what is the best interval size for a program with-
out the behavior of the whole program. Figures are not
available here due to space limitation.

Figure 5 shows the instructions-per-cycle (IPC) and
power error rates of the simulated benchmarks and the
average error rate. For each benchmark, the error rates
of IPC and power are similar and the average error rate
is below 2%.

Figure 4 and Figure 5 show the simulation-validated
feasibility of the SimPoint idea in power and energy
evaluation for large programs. In order to validate the
feasibility of the SimPoint method in power evaluation,
we need to identify each simpoint and trigger the phys-
ical measurement during the execution of the program.
This work is in progress now.

m

a g‘mr r&te{%}

o

error rate of ipc and power

il

ipc

il

o721 decode
BT 21encode
Ompeg2decode
Hunepic

Havy

povver

benchmarks

Figure 5. Error rates of IPC and power for
each benchmark and their average error
rates.

5. Future Work

Our focus in ongoing work is the placement of com-
piler generated code to identify simpoints during pro-
gram execution. The identification should not have sig-
nificant overhead or it will affect the accuracy of the
measurement result. It may be possible to define some
other form of program execution characterization that
is different from Basic Block Vectors for phase classifi-
cation, which may make the runtime identification of a
simpoint easier. [13] describes a system using dynamic
instrumentation for profiling, which may be helpful for
the identification of the simpoints.

From the comparison of the physical measurement
and simulation of the small program in Section 3, we
can see that sometimes simulators can give us mislead-

ing results. Since our infrastructure can get precise mea-
surement of a region in a program, we can design some
specific micro-benchmarks to validate an energy simu-
lator to help provide semantic connection between the
physical measurement and the measured program.

After the above steps, we will have an integrated eval-
uation infrastructure for OS/compiler power and energy
optimizations that will help in future power/energy opti-
mization research. Our current work is concentrated on
the ARM architecture. We will build a general-purpose
power/energy evaluation infrastructure that can be ap-
plied to more architectures.

6. Conclusion

This paper describes an evaluation infrastructure for
OS/compiler power and energy optimizations. This in-
frastructure brings together the advantages of simula-
tion and physical measurement. It can provide objec-
tive evaluation of an optimization and semantic connec-
tion between measured power/energy and source code
if needed. In order to overcome hardware limitations
and measure long programs, we plan to use the Sim-
Point idea to find representative slices of a program and
do physical measurement on these slices. The prelim-
inary results show that our current infrastructure can
do non-intrusive physical measurement and get precise
power/energy behavior of the measured region of a pro-
gram. Also, through simulation, we validated the fea-
sibility of the SimPoint idea in power/energy evalua-
tion. Validation through physical measurement is on-
going. We expect that the final infrastructure can help
researchers find more optimization opportunities and
avoid the effects of misleading evaluation results.

References

[1] http://www.eecs.umich.edu/
~panalyzer/.

[2] http://www.cs.ucsd.edu/~calder/
simpoint/index.htm.

[3] http://cares.icsl.ucla.edu/
MediaBench/.

[4] B. Black and J. P. Shen. Calibration of microproces-
sor performance models. IEEE Computer, 31(5):59-65,
May 1998.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and op-
timizations. Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture, page 83,
June 2000.

[6] T.L. Cignetti, K. Komarov, and C. S. Ellis. Energy es-
timation tools for the palm. International Workshop on
Modeling Analysis and Simulation of Wireless and Mo-
bile Systems, pages 96-103, August 2000.

(7]

8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. Pro-
ceedings of the 28th Annual International Symposium on
Computer Architecture, pages 266-277, June 2001.

J. Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile application. The
Second IEEE Workshop on Mobile Computing Systems
and Applications, page 2, February 1999.

S. Ghiasi and D. Grunwald. A comparison of two archi-
tectural power models. Proceedings of the First Inter-
national Workshop on Power-Aware Computer Systems,
pages 137-152, November 2000.

S. Gurumurthi, A. Sivasubramaniam, M. J. Mary Jane Ir-
win, N. Vijaykrishnan, M. Kandemir, and J. L. K. Li,
Tao. Using complete machine simulation for software
power estimation: The softwatt approach. International
Symposium on High Performance Computer Architec-
ture(HPCA), page 141, February 2002.

Hennessy, John L. and Patterson, David A. Computer ar-
chitecture: A quantitative approach(third edition). 2002.
C. Isci and M. Martonosi. Runtime power monitor-
ing in high-end processors: Methodology and empirical
data. Proceedings of the 36th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, page 93, De-
cember 2003.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of
large intel itanium programs with dynamic instrumenta-
tion. Proceedings of the 37th International Symposium
on Microarchitecture, pages 81-92, December 2004.

M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: The simos ap-
proach. IEEE Parallel and Distributed Technology: Sys-
tems and Applications, 3(4):34-43, December 1995.

T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and sim-
ulation points in applications. International Conference
on Farallel Architectures and Compilation Techniques,
pages 3—14, September 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behav-
ior. 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 45-57, October 2002.

A. Sinha and A. P. Chandrakasan. Jouletrack - a web
based tool for software energy profiling. Design Automa-
tion Conference, pages 220-225, June 2001.

N. Vijaykrishnan, M. Kandemir, M. L. Irwin, H. S. Kim,
and Y. W. Energy-driven integrated hardware-software
optimizations using simplepower. Proceedings of the
27th Annual International Symposium on Computer Ar-
chitecture, pages 95-106, June 2000.

H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Ecosystem: Managing energy as a first class operating
system resource. Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 36(5):123—-132, De-
cember 2002.

