
35

Low Power/Energy Compiler Optimizations

Ulrich Kremer
Department of Computer Science

Rutgers University

35.1 Introduction

35.2 Why compilers?

35.3 Power vs. Energy vs. Performance
Power vs. Energy, Power/Energy vs. Performance,
Summary

35.4 List of Optimizations
Dynamic Voltage and Frequency Scaling, Resource
Hibernation, Remote Task Mapping

35.5 Future Compiler Research for Power/Energy

35.1 Introduction

Embedded processor and SoCs are used in many devices, ranging from pace mak-
ers, sensors, phones, and PDAs, to general-purpose handheld computers and lap-
tops. Each of these devices has their own requirements for performance, power
dissipation, and energy usage, and typically implements a particular tradeoff
among these entities. Allowing components of these devices to be controlled by
software has opened up opportunities for compilation and operating strategies to
reduce power dissipation and energy usage, at the potential cost of performance
degradation. Such control includes (1) hibernation, i.e., initiating transitions of
a component between a high power, active states and lower power, hibernat-
ing states, (2) dynamic frequency and voltage scaling, which allows the clock
speed and supply voltage to be set explicitly within a range of feasible voltage
and frequency combinations, and (3) remote task mapping, where power and
energy is saved on a mobile device by executing a task remotely on a server. In
this chapter, we discuss general issues and challenges related to compilers for
power and energy management. A set of compilation strategies will be further

1



examined together with initial results that show their potential benefits.

35.2 Why Compilers?

Compilers translate a program in a high-level language into a program that can
be executed on a target architecture. In other words, compilers support high-
level programming models that allow programmers to describe the solution to
their problem at an abstraction level closer to the particular problem domain.
As a result, programs are easier to understand and maintain. Porting a program
to another target system requires recompilation on the new system rather than
reimplementing the program in the new assembly/machine language. However,
these benefits may come at the price of a reduction in overall program per-
formance. Typically, the effectiveness of a compiler and its generated code is
measured by comparing it against a code that an “expert” assembly/machine
code programmer would have written, or even the best machine code possi-
ble. For an optimizing compiler, this difference should not be too large, where
the acceptable performance gap depends on the particular application domain.
What such a comparison does not capture is the effort needed by an “expert”
programmer to come up with such a high quality code. Modern embedded
processors have many features previously found only in high performance pro-
cessors, including SIMD instructions, VLIW design, and multiple independent
memory banks. The effort to write efficient or even correct programs may be pro-
hibitively high, in particular for embedded systems with short time-to-market
cycles. As a result, high-level languages and their optimizing compilers are be-
coming a necessary alternative to programming advanced embedded processors
in machine and assembly code. Instead of rewriting a set of applications for a
new target system, a new compiler has to be provided for that new architecture.
Researchers in the embedded systems compiler community have developed and
are further investigating new compilation infrastructures that allow the effec-
tive retargeting of compilers [9]. Although the issue of retargetability is very
important, it will not be covered in this chapter.

Optimizing compilers perform program analyses and transformations at dif-
ferent levels of program abstraction, ranging from source code, intermediate
code such as three address code, to assembly and machine code. Analyses and
transformations can have different scopes. They can be performed within a sin-
gle basic block (local), across basic blocks but within a procedure (global), or
across procedure boundaries (interprocedural). Traditionally, optimizing com-
pilers try to reduce overall program execution time or resource usage such as
memory. The compilation process itself can be done before program execution
(static compilation), or during program execution (dynamic compilation). This
large design space is the main challenge for compiler writers. Many tradeoffs
have to be considered in order to justify the development and implementation of
a particular optimization pass or strategy. However, every compiler optimiza-
tion needs to address the following three issues:

1. opportunity: When can the optimization be applied?

2



2. safety: Does the optimization preserve program semantics?

3. profitability: When applied, how much performance improvement can be
expected?

Clearly, every program transformation should be safe. Compiler writers will
be out of their jobs if safety can be ignored. Profitability has to consider any
overheads introduced by an optimization, in particular runtime overheads. The
combination of opportunity and profitability allows the assessment of the ex-
pected overall effectiveness of an optimization.

In principle, hardware and OS based program improvement strategies face
the same challenges as compiler optimizations. However, the tradeoff decisions
are different based on the acceptable cost of an optimization and the availability
of information about dynamic program behavior. Hardware and OS techniques
are performed at runtime where more accurate knowledge about control flow and
program values may be available. Opportunity, safety and profitability checks
result in execution time overheads, and therefore need to be rather inexpensive.
Profitability analyses typically use a limited window of past program behavior
to predict future behavior. In contrast, in a static compiler, most of the op-
portunity, safety and profitability checks are done at compiler time, i.e., not at
program execution time, allowing more aggressive program transformations in
terms of affected scope and required analyses. Since the entire program is avail-
able to the compiler, future program behavior may be predicted more accurately
in the cases where static analysis techniques are effective. Purely static compil-
ers do not perform well in cases where program behavior depends on dynamic
values that cannot be determined or approximated at compile time. However, in
many cases, the necessary dynamic information can be derived at compile time
or code optimization alternatives are limited, allowing the appropriate alterna-
tive to be selected at runtime based on compiler generated tests. The ability
of the compiler to reshape program behavior through aggressive whole program
analyses and transformations that is a key advantage over hardware and OS
techniques, exposing optimization opportunities that were not available before.
In addition, aggressive whole program analyses allow optimizations with high
runtime overheads which typically require a larger scope in order to assess their
profitability.

In the following, several promising compiler optimization techniques are dis-
cussed, together with an assessment of their potential benefits. These optimiza-
tions include remote task mapping, resource hibernation, and dynamic voltage
and frequency scaling.

35.3 Power vs. Energy vs. Performance

Optimizing compilers need underlying performance models and metrics to be
able to transform the program code for a specific optimization goal. These mod-
els and metrics guide the compiler to make selections among program transfor-
mation alternatives. If one optimization goal subsumes another, there is no

3



need to develop separate models and metrics for the subsumed models. In this
section we address the question whether power, energy, and performance should
be considered separate compiler optimization goals or not.

Power vs. Energy

Optimizing for minimal power dissipation or minimal energy usage may have
different metrics, and therefore result in different optimization strategies. One
possible metric for power and energy is that of activity level at any given point
during program execution and total amount of activities for a program region,
respectively. The more “work” is done at a program point, the more power is
dissipated. Given these metrics, is optimizing for power the same as optimizing
for energy? The answer will depend on the particular definition of “work”.

An optimizing compiler may define work as the number of instructions ex-
ecuted at a given point in time. This model assumes that (1) a fixed amount
of power is associated with each executed instruction, and that (2) the power
dissipation of an instruction is independent of its particular operand values or
other executing instructions. Figure 1 illustrates this case. By reordering or
rescheduling instructions, for instance in a VLIW or superscalar architecture,
the initial power profile of a program region as shown on the left of Figure 1
may ideally be transformed into the one shown on the right. While the peak
power dissipation is different for both profiles, the energy usage is the same.
In other words, activity or work rescheduling can be an effective way to reduce
peak power dissipation while having no impact on energy usage. Therefore,
peak power reduction may be an optimization objective different from energy
reduction.

For power models based on bit-level switching activities as its work notion,
rescheduling instructions may also target overall energy usage by grouping in-
structions based on their particular bit patterns. In addition to instruction
scheduling, a careful selection of register names in the code generation phase of
a compiler can result in code sequences that have bit patterns with less switching
activities, for instance due to the reuse of “similar” register names [7].

Due to the particular chemical characteristics of some batteries, highly vary-
ing discharge rates, i.e., varying power dissipations, may reduce the lifetime of
a battery significantly. By “smoothing” the power dissipation profile of an ap-
plication through instruction scheduling and reordering, the usable energy of a
battery can be significantly increased [11].

From now on, we will not distinguish between the optimization objectives
of reducing peak power dissipation and overall energy usage unless explicitly
stated.

Power/Energy vs. Performance

Early work on optimizing compilers for power and energy management suggested
that optimization transformations for performance subsume those for power and
energy management. Therefore, power/energy is not an optimization objective

4



timetime

po
w

er

po
w

er

Figure 1: Optimizing for power vs. energy: Two possible power profiles of an
example program region.

in its own right [13]. Traditional optimizations such as common subexpression
elimination, partial redundancy elimination, strenght reduction, or dead code
elimination increase the performance of a program by reducing the work to be
done during program execution [12, 2]. Clearly, reducing the workload may also
result in power/energy savings. Memory hierarchy optimizations such as loop
tiling and register allocation try to keep data closer to the processor since such
data can be faster accessed. Keeping a value in an on-chip cache instead of an
off-chip memory, or in a register instead of the cache also saves power/energy
due to reduced switching activities and switching capacitance.

However, there is fundamental difference in the models and metrics used
for performance and those for power/energy optimizations. Many performance
models have the notion of a critical path, i.e., a sequence of instructions or ac-
tivities that will dominate the overall program execution time. If an optimiza-
tion introduces activities on the non-critical path, performance is not affected.
Therefore, as long as these non-critical activities lead to an overall decrease of
the critical path (at least in most cases), the optimization is beneficial. In the
context of power/energy optimizations, this is not true. Any activity, whether
on or off the critical path will contribute to the overall power dissipation and
energy usage.

Figure 2 shows an example that illustrates the differences in optimizing for
power/energy versus optimizing for performance for a source-level transforma-
tion, in this case loop invariant code motion [12, 2]. In the example program,
the assignment a = b ∗ 2 is assumed to be loop invariant. For a traditional
scalar architecture, loop invariant code motion will move the assignment out
of the loop, resulting in the code on the right of Figure 2. In a VLIW ar-
chitecture, the code on the left may be best if empty VLIW instruction slots
are available to execute the loop invariant assignment for each iteration of the
loop. Although the assignment is done ten times, it may reduce the overall
critical path. Depending on the particular overall compilation strategy used,
moving the assignment out of the loop may actually increase the critical path.
In the context of power/energy optimization, performing redundant computa-
tions should be avoided, and therefore moving the invariant assignment out of

5



for (i=0; i<10; i++) { a = b ∗ 2;
a = b ∗ 2; for (i=0; i<10; i++) {
c[i] = d[i] + 2.0; c[i] = d[i] + 2.0;

} }

Figure 2: Example code fragment to illustrate power vs. performance optimiza-
tion strategies.

the loop typically leads to power and energy savings.
Another example where optimizations for power/energy may be different

from that for performance is speculative execution. Speculation performs activ-
ities “ahead of time” based on some assumptions about the future behavior of
the program. If these assumptions turn out to be false, additional work may be
necessary to undo the impact of the speculative performed activities. Software
prefetching is an example of such a transformation. The compiler may insert
prefetch instructions for memory accesses across control branches. Assuming
that the target machine allows multiple outstanding loads, this optimization
can be very effective. Again, as long as the speculative activity can be hidden
on the non-critical execution path, no negative impact on performance will oc-
cur. In the context of power/energy optimizations every additional, speculative
activity has to be compensated for by the overall power/energy benefit of the
optimization in order to make things not worse. In other words, the window
of profitability has to be larger for power/energy optimizations than perfor-
mance optimizations. This does not mean that speculation cannot be applied
for power/energy optimizations, but suggests a less aggressive application of
such a transformation by restricting it to the cases where the benefit is likely.

Summary

In recent years, reducing power dissipation and energy consumption of a pro-
gram have become optimization goals in their own right, no longer considered a
by-product of traditional performance optimizations which mainly try to reduce
program execution times. Power and energy optimizations can be implemented
in hardware through circuit design, by the operating system through scheduling
techniques that consider the power and energy requirements of active processes,
and by the compiler through compile-time analyses, code reshaping, and hints
to the operating system. The following issues should be considered during the
design of an optimizing compiler for power/energy management:

1. You can run but you cannot hide: All instructions, including instructions on
the non-critical path contribute to the overall power dissipation and en-
ergy consumption. As a result, power/energy optimizations have a higher
threshold for profitability than performance optimization if they require
additional instructions to be executed.

6



2. Keep the overall picture in mind: A power/energy optimization with a slight
performance penalty may be profitable for a single system component
(e.g.: cache, CPU, memory), it may not be profitable for the overall sys-
tem due to its impact on the power/energy requirements of other system
components. In addition, the power/energy characteristics of other active
processes have to be considered in a multi-programming environment.

3. You cannot beat hardware: If an operation is implemented in hardware,
and an application can take advantage of this hardware (e.g.: floating
point unit), a compiler should try to generate code for it. If the hardware
dissipates power while idle, the compiler needs to be able to disable it
during such idle periods.

35.4 List of Optimizations

In the following, three compiler optimizations are discussed. These optimiza-
tions are just examples, and are presented to illustrate the potential benefits of
compile time power/energy management. This list is by no means complete.

Dynamic Voltage and Frequency Scaling

Dynamic voltage scaling (DVS) is recognized as one of the most effective power
reduction techniques. It exploits the fact that a major portion of power of
CMOS circuitry scales quadratically with the supply voltage [3]. As a result,
lowering the supply voltage can significantly reduce power dissipation. For non-
interactive applications such as movie playing, decompression, and encryption,
fast processors reduce device idle times, which in turn reduce the opportunities
for power savings through hibernation strategies. In contrast, DVS techniques
are still beneficial in such cases, i.e., DVS reduces power even when these devices
are active. However, DVS comes at the cost of performance degradation. An
effective DVS algorithm is one that intelligently determines when to adjust the
current frequency-voltage setting (scaling points) and to which frequency-voltage
setting (scaling factors), so that considerable savings in energy can be achieved
while the required performance is still delivered.

One possible compiler-directed algorithm identifies program regions where
the CPU can be slowed down with negligible performance loss [6]. It is imple-
mented as a source-to-source level transformation using the SUIF2 [1] compiler
infrastructure. Physical measurements on a laptop with a 600-1200 MHz AMD
Athlon 4 processor show that total system energy savings of up to 23% can be
achieved with performance degradation of less than 5% for the SPECfp95 bench-
marks. On average, the energy and energy-delay product are reduced by 11%
and 9%, respectively, at the cost of the performance slowdown of 2%. It was
also discovered that the energy usage of the programs using this DVS algorithm
is within 6% from the theoretical lower bound.

7



Resource Hibernation

A common approaches to increase energy efficiency puts idle resources or entire
devices in low-power (hibernation) states until they have to be accessed again.
The transition to a lower power state usually occurs after a period of inactivity
(an inactivity threshold), and the transition back to active state usually occurs
on demand. Unfortunately, the transitions to and from the low-power state
can consume significant time and energy. Nevertheless, this strategy works well
when there is enough idle time to justify incurring such costs.

Source-level transformations can be used to reshape the program behavior
such that inactivity thresholds of a device or component are extended, allow
hibernation to be more effective. By allowing the compiler to give hints to the
operating system about expected idle times of these components and devices,
the operating system is able to issue deactivation directives earlier and activa-
tion directives just in time before the device or component is used again. In
addition, the operating system can use these hints to implement the most ef-
ficient policy for the set of active processes. The results reported in [5] show
that on a set of streamed and non-streamed application, the reshaped programs
can achieve disk energy reductions ranging from 55% to 89% (70% on average)
under a sophisticated energy management policy with only a small performance
degradation.

Remote Task Mapping

Mobile devices come in many flavors, including laptop computers, Webphones,
pocket computers, Personal Digital Assistance (PDAs), and intelligent sensors.
Many such devices already have wireless communication capabilities, and we
expect most future systems to have such capabilities. There are two main dif-
ferences between mobile and desk-top computing systems, namely the source
of the power supply and the amount of available resources. Mobile systems
operate entirely on battery power most or all the time. The resources available
on a mobile system can be expected to be at least one order of magnitude less
than those of a “wall-powered” desk-top system with similar technology. This
fact is mostly due to space, weight, and power limitations placed on mobile
platforms. Such resources include the amount and speed of the processor, mem-
ory, secondary storage, and I/O. With the development of new and even more
power-hungry technology, we expect this gap to widen even more. Remote task
mapping is a technique that tries to off-load computation to a remote server,
thereby saving power and energy on the mobile devices [8, 10].

A possible compilation strategy that generates two versions of the initial
application, one to be executed on the mobile device (client), and the other on
a machine connected to the mobile device via a wireless network (server) [8].
The client and server codes have to be able to deal with disconnection events.
The proposed compilation strategy uses checkpointing techniques to allow the
client to monitor program progress on the server, and to request checkpoint data
in order to reduce the performance penalty in case of a possible server and/or

8



network failure.
The reported results have been obtained by actual power measurements of

an image processing application (face detection and face recognition) on three
client systems, (1) the StrongARM based low-power SKIFF system developed at
Compaq’s Cambridge Research Laboratory, (2) Compaq’s commercially avail-
able StrongARM based iPAQ H3600, and (3) a PentiumII based laptop. Initial
experiments show that energy consumption can be reduced significantly, in some
cases up to one order of magnitude, depending on the selected characteristics
of the mobile device, remote host, and wireless network.

35.5 Future Compiler Research for Power/Energy

Compiler research for power and energy management is still in its infancy. Such
research requires platforms that expose power and energy management features
to higher software levels such as the compiler through standardized interfaces
(APIs). While efforts have been made in some areas (e.g.: ACPI [4]), more work
needs to be done.

In addition, the lack of a reliable and effective evaluation infrastructures for
power and energy optimizations has significantly hampered compiler research.
The compiler community relies mostly on physical measurements on existing
target systems for a set of representative benchmarks to evaluate the benefits
of a given optimization or set of optimizations. Simulation results are accepted
as an indication of a potential benefit of an optimization, but are typically
not considered sufficient proof that the optimization is worthwhile in practice.
What is needed is an evaluation infrastructure for power and energy optimiza-
tions that consists of a combination of physical measurements and performance
modeling. Physical measurements need to include current and voltage measure-
ments, as well as temperature measurements. Performance models are needed
for the CPU, memory subsystems, controllers, communication modules, and
I/O devices such as the disk and screen. This technology is crucial to be able
to understand and assess the benefits of a proposed optimization for the entire
target system, subsets of system components, or single system components.

Acknowledgement

This work has been partially supported by NSF CAREER award #9985050.
Any opinions and conclusions expressed in this chapter are those of the author,
and do not necessarily reflect the view of the National Science Foundation.

References
[1] National Compiler Infrastructure (NCI) project. Overview available online at

http://www-suif.stanford.edu/suif/nci/index.html., Co-funded by NSF/DARPA, 1998.

[2] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Reading, MA, second edition, 1986.

9



[3] T. Burd and R. Brodersen. Energy efficient CMOS microprocessor design. In the 28th
Hawaii International Conference on System Sciences (HICSS-95), January 1995.

[4] Intel Corp., Microsoft Corp., and Toshiba Corp. ACPI implementers’ guide. Draft,
February 1998.

[5] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Application transforma-
tions for energy and performance-aware device management. In International Conference
on Parallel Architectures and Compilation Techniques (PACT’02), Charlottesville, VA,
September 2002.

[6] C-H. Hsu and U. Kremer. The design, implementation, and evaluation of a compiler
algorithm for cpu energy reduction. In ACM SIGPLAN Conference on Programming
Languages, Design, andImplementation (PLDI’03), San Diego, CA, June 2003.

[7] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, W. Ye, and I. Demirkiran. Register relabel-
ing: A post compilation technique for energy reduction. In Workshop on Compilers and
Operating Systems for Low Power (COLP’00), Philadelphia, PA, October 2000.

[8] U. Kremer, J. Hicks, and J. Rehg. A compilation framework for power and energy man-
agement on mobile computers. In International Workshop on Languages and Compilers
for Parallel Computing (LCPC’01), Cumberland, KT, August 2001.

[9] R. Leupers. Compiler design issues for embedded processors. IEEE Design & Test of
Computers, 19(4):51–58, July/August 2002.

[10] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld devices: A
partition scheme. In International Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES 2001), Atlanta, GA, November 2001.

[11] T. Martin and D. Siewiorek. The impact of battery capacity and memory bandwidth on
CPU speed-setting: A case study. In International Symposium on Low Power Electronics
and Design (ISLPED), pages 200–205, San Diego, CA, August 1999.

[12] S.S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann Pub-
lishers, San Franscisco, CA, 1997.

[13] V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction level power analysis and opti-
mization of software. Journal of VLSI Signal Processing, 13(2/3):1–18, 1996.

10


