Heisenbugs and Bohrbugs:
Why are they different?

March 8, 2003

Abstract

Jim Gray proposed a classification of bugs based
on the type of failures they induce. Bohrbugs
are bugs which always cause a failure when a
particular operation is performed. Heisenbugs
are bugs which may or may not cause a fault for
a given operation. It has often been questioned
as to whether these two bug categories are the
same or different. The main reason for the ar-
gument is that if everything is the same, a bug
should resurface and then by definition a Heisen-
bug should be the same as a Bohrbug.

We take the position that Heisenbugs and
Bohrbugs are different types of bugs. As argu-
ment, we try to clarify the definition of Heisen-
bugs and Bohrbugs and explain what an “oper-
ation” really means in context of the definitions.
Although Heisenbugs could resurface if the con-
ditions which lead to the failure reappear, we
show that it is very difficult to recreate the con-
ditions which existed when the fault first hap-
pened.

After giving evidence in our favor, we explain
how to debug software systems in the presence
of Heisenbugs.

1 Introduction

J. Gray [1] put forth the hypothesis that bugs
occurring in a computer system can be classi-
fied into two types: Heisenbugs and Bohrbugs.
The basis for the classification was the ease with
which the failure produced by the bug could be

repeated. If a Bohrbug is present in the system,
there would always be a failure on retying the
operation which caused the failure. In case of a
Heisenbug, the error could vanish on a retry.

Bohrbug was named after the Bohr atom. Just
as the Bohr atom is solid, a Bohrbug is also
solid and easily detectable by standard debug-
ging techniques. The word Heisenbug comes
from Heisenberg’s Uncertainty Principle which
states that it is fundamentally impossible to pre-
dict the position and momentum of a particle at
the same time. If we try to apply standard de-
bugging techniques such as cyclic debugging [5]
to catch the error, we may find that the error has
disappeared. Bohrbug is also called a permanent
fault while Heisenbug is called as a transient or
intermittent fault [2]. Note that inspite of the
name, in both cases the fault is very much there
at all times.

According to J.Gray, most industry software sys-
tems are released after design reviews, quality as-
surance, alpha, beta and gamma testing. They
are mostly free from Bohrbugs which easily get
caught as they are solid, but Heisenbugs may
persist. As a result, most software failures in
software systems are soft i.e. if the software sys-
tem is restarted it would function correctly.

2 Software System and its en-
vironment

It is very important to understand what a soft-
ware system and its environment consists of, be-
fore dealing with the subject of bugs. A process



consists of

1. program
2. data

3. stack

In addition, the process depends on a number
of external factors for its faultless execution, to
name a few:

1. Hardware

2. Operating System Code and Data struc-
tures

3. Other programs which it synchronizes with

The initial set of items form the software system,
while the later set constitutes the environment of
the system.

We should note that for a given program the
state of the first set of items only depends on
the input to a program. By input, we mean the
parameters to a program or the data values ac-
cepted as input via I/O. Given a program and
initial state of data and stack areas, for some in-
put, the program should act so as to move the
data and stack state to a predictable state. This
can be easily inferred from the program correct-
ness rules by [12].

However, we cannot assume that the evironmen-
tal factors are the same every time the program
is run. The OS code might do process schedul-
ing, memory management differently each time
the program is run, the hardware might have
changed, other programs might have changed
their behavior.

3 The Argument

It has often been debated in academic circles
as to whether Heisenbugs and Bohrbugs are the
same. The fundamental reason for the debate
is that the classification scheme uses failure as

a means of classifying the fault. If we could get
the failure to occur again, all Heisenbugs would
be Bohrbugs.

We do not consider this line of argument to be
correct and take the position that Heisenbugs
and Bohrbugs are distinct. In section 4, we will
explain the main arguments in favor of classify-
ing Heisenbugs and Bohrbugs together as a sin-
gle category of bugs. Sections 5, 6, 7, 8 refute
those arguments and explain why we need the
two categories. Conclusion and implications of
our position are present in section 9.

4 Counterclaims

It is claimed that Heisenbugs are same as
Bohrbugs since it is theoretically possible to
recreate a failure caused due to a Heisenbug. If
we can create the exact environment that was
present during the execution of the program the
first time and provide the same input, the fail-
ure should occur again and hence according to
definition, the bug should be a Bohrbug.

This argument is based on the fact that com-
puter systems are discrete hence there are only
a finite number of states possible for a computer
system. This effectively means that if we could
get the computer back into that state which
caused the error to happen, we could make the
failure to reappear again.

Another argument is that for a Bohrbug to hap-
pen, we must perform the same operation on the
program. The operation being external to the
program is also an environmental factor. There-
fore, both Heisenbug and Bohrbug can appear or
disappear based on whether the environmental
factors which caused the error are still present,
so there is no difference between the two.

We do not agree with the above statements. The
first argument is no good because although soft-
ware systems are discrete there are many factors
such as timing of asynchronous operations and
clock drift that come into play so that it is not
possible to recreate exactly the same conditions



once again. The second argument strongly de-
pends on the definition of the two kinds of faults
and we think the key to the argument is the
word ”operation”. An operation is the input pro-
vided to the program. As we have told before,
we consider input to be parameters to methods
and data values received as input through 10. It
should not be mixed up with any of the other
environmental factors. We therefore think that
Heisenbugs should be distinct from Bohrbugs.

5 Second Law of Thermody-
namics

According to the ”Second Law of Thermodynam-
ics”, the entropy of a closed system increases
with time [6]. This means that the state of dis-
order in the system increases with time. If a pro-
gram is executed once, there is an increase in the
entropy of the system already. By system here,
we mean the program plus its environment. The
second time a program executes, even if we try
the same operation, the disorder in the system
is higher.

The entropy is a measure of the probability of
a particular state. This means that the state in
which the system exists is more probable than
what it was earlier. The present system has less
information in it as compared to the previous
state. If we want to retain old information, we
will need to record it separately. In case of a
computer system, this would require special logs.

For example, if a disk drive has a disk platter
which rotates and a drive head which moves over
the head. It is quite possible that due to mechan-
ical motion, the platter or the head has wear and
tear and it loses mass and the operation of the
disk will not be the same as before. Similarly, the
keyboard, the mouse and other mechanical com-
ponents may face slow wear and tear and change
in behavior.

It may therefore be impossible to get the same
hardware environment as before. Although, one
could argue that we could replace the hardware,

but the problem still exists. The new hardware
need not be similar to the old hardware (when it
was younger).

6 Asynchronous Operations

Although computer systems operate on the ba-
sis of a system clock, many operations in the
computer are not synchronized to the system
clock. Most of the peripheral devices use their
own clock or are not clocked at all. This means
that processes and the corresponding peripheral
device operation may not be synchronized. This
tremendously increases the number of states a
computer system can be in, as the number of
combinations of the state of the process and the
state of the asynchronous operation can be large.

Also, in case of unclocked operations, the con-
cept of discrete states cannot be used and there
could be infinite possibilities. The time required
to complete an unclocked operation is measured
in pure real time (not in clock time) which is a
continuous quantity. These asynchronous opera-
tions create uncertainties regarding the working
of a computer system particularly in the schedul-
ing part. These uncertainties in time can then
translate to disappearing bugs.

6.1 Example 1 - Disk Drive Operation

The disk drive of a computer have variable seek
time. If we run the program one time and then
restart the system and rerun the program a sec-
ond time, due to the variability of the seek time,
for the same disk accesses coming in, we might
get a different sequence of disk accesses.

Processes are normally blocked if they need a
page from the disk. Since, the disk access se-
quence is not the same, the processes may remain
blocked or unblocked for variable amount of time
and so the processes may not all be scheduled in
the same sequence as before. This means that
a race condition that happened before may not
happen now.



6.2 Example 2 - Network Character-
istics

There are a large number of programs which use
network connectivity. The traffic characteristic
and load on the network cannot be duplicated
in order to retest the system. Suppose packet 1
was originally lost once, in the second run also we
must also lose it once. The delays encountered
must be similar. On a lossy, best-effort network-
ing infrastructure, this is a hard problem.

6.3 Example 3 - Software Clock Drift

The software clock of a computer system is kept
up to date by use of high priority interrupts. Pe-
riodically, an interrupt is generated and the In-
terrupt Service Routine(ISR) for that Interrupt
increments a register keeping track of the time.
If the interrupt is masked or in general, the in-
terrupts are disabled, the ISR will not be called
and the ISR will not execute causing the clock
to lose time [13].

This might affect applications which use current
time to perform some work. For redoing an op-
eration, we cannot just take the clock back and
restart, clock drift will not allow the application
to run the same way as before. A random num-
ber generator, for example, uses the current time
as its seed. It is possible that during retry (even
after pushing back the clock), a different seed
was obtained since the clock time when srand()
was called will not match the previous case and
that will give an entirely different sequence of
random numbers.

6.4 Example 4 - Processor Clock Drift

The processor clock depends on the crystal used.
The crystals are normally precise in their fre-
quency ratings but poor in accuracy. This means
that the processor clock should be stable, how-
ever the frequency of these clocks strongly de-
pend on the temperature and other environmen-
tal factors [13]. (environment here means the
weather and other such conditions and is not the

same as the the software environment mentioned
earlier) Depending on temperature, the clock can
run at a different rate and consequently schedul-
ing could be altered, causing a previously present
error to disappear.

We can give an example as to how asynchronous
operations can affect the correctness of a system.
Let us assume that a system has non-blocking
read operation. It is possible that if we do a
non-blocking read instead of a blocking one by
mistake, the buffer may not filled in at all. How-
ever, if we give more time to the system (lot of
processes are running), the buffer may actually
be filled and the bug just disappears [14].

This section thus explains how clock frequency
and asynchronous operations distort the image
of a computer system as being truely discrete.
In the next section, we look at effects caused by
trying to debug the system.

7 Probe effects

Cyclic debugging techniques are normally used
for debugging software. In this technique, on a
failure, the code is attached to debugging utili-
ties and a rerun is performed. However, the very
fact that debugging tools have been attached to
the program may cause the programs evironment
to change. For example, if the debugger and
the program runs in the same address space,
the amount of memory [7] might be affected.
Also, since an additional process is added, pro-
cess scheduling might also be altered. This might
lead to disappearance of the failure.

We should note that we cannot do anything to
remove this kind of probe effect and to eliminate
the uncertainty introduced due to asynchronous
operations. Doing so would require 100% pre-
cise deadline scheduling which has not been per-
formed to date. Deadline scheduling is needed
since we want to strictly control how the pro-
grams run.



8 C(lassification Criteria

It is really interesting to know what is the
distinguishing criteria between Heisenbugs and
Bohrbugs. Classification of faults based on kind
of failures that occur might not be the right clas-
sification. We need some intrinsic property of
Heisenbugs and Bohrbugs which can separate the
two.

Jim Gray gives the possible Heisenbugs. They
could be:

1. Strange hardware conditions (rare and tran-
sient hardware failure)

2. Special Limit conditions (out of storage,
counter overflow, lost interrupt, etc)

3. Race conditions

Carefully analyzing these faults, it is quite clear
that Heisenbugs are caused due to interaction
between conditions which occur outside the pro-
gram being debugged and the program itself.
The following can lead to Heisenbugs:

1. Uncertain environment (interrupt lost)

2. Wrong assumptions about the environment
(memory is unlimited, so use and never free)

3. Wrong assumptions about the interaction
between various subcomponents of a system
(Program A and B use resource R, however
when A is being written, we forget com-
pletely about B)

On the other hand Bohrbugs must be caused
by wrong specifications about the system itself
or mistakes in converting the specifications to a
design. We can conclude this since a Bohrbug
always recurs on retrying the operation. This
is possible only if the designer or programmer
coded up the system behavior incorrectly for
that particular operation.

It could still be argued that since Bohrbugs
are caused due to wrong code for some input

while Heisenbugs are caused due to wrong code
for some environmental conditions and since in-
puts to a program are part of the environment
of the program, Heisenbugs and Bohrbugs are
the same. This reasoning although correct only
forces us to refine the definition of Heisenbugs
and Bohrbugs.

Heisenbugs are errors in the program’s assump-
tion about the environment (except the input
values) and the interaction between the subcom-
ponents. Bohrbugs are errors in the program’s
actions based on its input values.

Thus we see a clear distinction between Heisen-
bug and Bohrbug.

9 Conclusion

These arguments clearly indicate that Heisen-
bugs and Bohrbugs are distict types of bugs. The
difference is contingent on two important obser-
vations. The asynchronous nature of computer
processes and the definition of what constitutes
an operation.

The next question that should be answered is, in
face of this uncertainty present, what strategies
should we use to detect and eliminate bugs? We
can take the analogy from Physics inorder to an-
swer this question. On account of Heisenberg’s
uncertainty principle, we cannot predict the po-
sition and momentum of the particle at the same
time. However, we can give a good probabilis-
tic estimate of where the particle could be and
what momentum it could have. Actually, In [8],
the author makes a case for probabilistic mod-
elling of software errors.

In case of a Heisenbug, although we cannot re-
peat the failure by retrying the same operation,
we could get a good probabilistic estimate of
where the error should be. We can perform
a number of operations which exercise different
components of the system. Errors happen some
time or they do not, but by using a large sample
space, we should get good probabilistic estimate
of which component should be faulty. This idea



has been proposed and implemented in [9].

Some may find statistical arguments hard to
swallow, so other strategies are in use against
Heisenbugs. We could simulate execution of the
software system [10]. In a simulated environ-
ment, everything is under control of the simula-
tors. The environment is repeatable and some
Heisenbugs can be caught. However such a sim-
ulator may not catch all errors because the en-
vironment posed by the simulator is somewhat
different from the real world environment.

Another way of handling Heisenbugs is to intro-
duce fault tolerance. In fault tolerance based
schemes, the error is ignored and a new instance
of the software system or component carries on
the task. The idea is that if one instance of the
system fails, the other could continue since its
environment may not lead to a failure. Process
pairs, N-version programming, etc [1] aid against
Heisenbugs. Also, J. Gray[1] has given a rollback
based scheme in which the occurrence of an error
lead to retry after rollback. Since the environ-
ment must have changed the error, most prob-
ably the error would not repeat. [11] proposes
a scheme in which debugging is combined with
fault tolerance. If a fault occurs, a new error-free
version of the component replaces the old com-
ponent. The paper describes how to perform this
while the system is online.

Newer debugging techniques and fault tolerant
schemes thus aid programmers against Heisen-
bugs.

Acknowledgements

I am grateful to Rich Martin for his valuable ad-
vice on this paper. Many thanks to Neeraj Kr-
ishnan and Vishal Shah for discussing the topic
with me.

References

[1] J.Gray, Why do computers stop and what
can be done about them?, Tandem TR 85.7

[2] M.Hiller, Software Fault-Tolerance Tech-
niques from a Real-Time Systems Point of
View - an overview, TR 98-16 Department
of Computer Engineering, Chamlers Uni-
versity of Technology, Sweden

[3] P.Bepari, Distributed Process Management
Protocol: A Protocol for Transparent Re-
mote Execution of Processes in a Cluster of
Heterogeneous Unix Systems, M.Tech The-
sis, Dept. of Computer Science and Engi-
neering, IIT Kanpur, April 1999

[4] M.Ronsse, K. De Bosschere, RecPlay: A
fully Integrated Practical Record / Replay
System, ACM Transactions on Computer
Systems, May 1999

[5] B.Miller, J.Choi, A Mechanism for Efficient
Debugging of Parallel Programs, SIGPLAN
1988

[6] E.Lieb, J.Yngvason, The Physics and Math-
ematics of The Second Law of Thermody-
namics, June 1997

[7] V.Paxson, A Survey of Support For Imple-
menting Debuggers, CS262, University of
California, Berkeley, 1990

[8] D.Hamlet, Foundations of Software Testing:
Dependability Theory, SIGSOFT, 1994

[9] M.Chen et al, PinPoint: Problem Deter-
mination in Large, Dynamic Internet Ser-
vices, International Conference on Depend-

able Systems and Networks, Washington
D.C., 2002

[10] L.Albertsson, P.Magnusson, Using Com-
plete System Simulation for Temporal De-
bugging Of General Purpose Operating Sys-

tems and Workloads, MASCOTS 2000

[11] D.Gupta, P.Jalote, Increase Software Relia-
bility through Rollback and On-line fault re-
pair, Department of Computer Science and

Engineering, II'T Kanpur

[12] C.A.R.Hoare, An Axiomatic Basis for Com-

puter Programming, Communications of
the ACM, Vol 12, Issue 10, October 1969



[13] http://www.beaglesoft.com/Manual/page75.htm

[14] http://c2.com/cgi-
bin/wiki?edit=HeisenBugs



