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Abstract

A range of research has explored the problem of
generating referring expressionsthat uniquely iden-
tify a single entity from the shared context. But
what about expressions that identify sets of enti-
ties? In this paper, | adapt recent semantic re-
search on plura descriptions—using covers to ab-
stract collective and distributive readings and us-
ing sets of assignments to represent dependencies
among references—to describe a search problem for
set-identifying expressions that largely mirrors the
search problem for singular referring expressions.
By structuring the search space only in terms of
the words that can be added to the description, the
proposa defuses potential combinatorial explosions
that might otherwise arise with reference to sets.

1 Introduction

Natural languageinteractionlendsitself totaskslike
generalization, abstraction, comparison, and sum-
marization which cal for seTs of objects to be
picked out using definite referring expressions.

For example, consider the concrete function of
describing the elements of afigure. In (1b), we find
apair of elements from (1a); imagine that some no-
table relationship leads to an intention to identify
and comment on just THOSE elements.
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¢ Theintersecting dotted segments.

As (1c) records, these are the intersecting dotted
segments of (1a), and can be designated as such.

Or again, we find distinguished in (2b) five ele-
ments of (2a), which might hold some independent
interest. So we can and should identify these ele-
ments, and (2c), the squares clustered at the lower
left, will do the trick.

O O
O |:[|:[
O O O
oot Oono
@a| O H =
I
g O
p| o U

¢ Thesguaresclustered at the lower left.

Concrete problems like those of (1) and (2) cast
into relief the potentia difficulty of identifying sets.
The world provides sets with embarrassing abun-
dance, yet weareableto call attentionto any of these
sets at will, and to describe it at will both by prop-
erties its members have on their own—the mem-
bersindividualy may be square or dotted—and by
properties or relationships that the set enjoys as a
collection—the set as a whole may be intersecting,
or clustered in acertain region.

Reference to setsismore general than picturesque
examples like (1) and (2) might suggest. Linguistic
research suggests that covert reference to SETS OF
SALIENT ALTERNATIVES playsapervasiveand fun-
damental rolein mediating between the meanings of
sentences and their interpretationsin context. Con-
sider (3), for example.



(3) a Only [Mary]g passed.
b Well, [1]g passed.
¢ Another student passed.

Accordingto (Rooth, 1992), theinterpretation of fo-
cusing adverbs such as only relates an instance a to
aset of alternatives C: the adverb describes a prop-
erty that makes a uniquein C. Thusin (3a) Mary is
unique among some set C of individualsin passing.
Likewise, scalar implicature, as illustrated in (3b),
depends on distinguishing one claim—my passing,
say—as the strongest claim that can be supported
among some salient set of claimsC—studentsinthe
class passing, for (3b). Rooth formalizes the focus
marking in these exampl es as contributing a presup-
position that helpsto identify these aternative sets.
More generally, arange of lexica items, including
the morpheme other from (3c), carry discourse pre-
suppositions that relate their referent to salient a-
ternatives from the context—like the students we
accommodate in understanding (3c) (Bierner and
Webber, 2000).

Overtly, al the examples in (3) involve singu-
lar noun phrases that specify isolated individuals.
Nevertheless, representing and reasoning about ref-
erence to setsisrequired for faithful account of how
such sentences are interpreted, and thus how such
sentences can achieve the communicative goals of a
system for natural language generation (NLG).

So how are expressionsthat refer to setsto be con-
structed? In this paper, | will argue that identifying
sets of individualsis not as forbidding as it may at
first appear. The extensiveliteraturein NLG on sin-
gular references starting with (Dale and Haddock,
1991) tells us what to do. We must use the INTER-
PRETATION of provisiona descriptions in context
to assemble a combination of descriptive elements
which identifiestheintended target. Take (2), where
we used the descriptive elements square, clustered
somewhere, and at the lower left. Tracking the in-
cremental interpretation of these descriptors should
lead to asequence likethat in (4).
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The squares clustered somewhere.
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Thishigh-level story leaves us on familiar ground.
The project of this paper is to redlize this high-
level story in formal terms. | begin in Section 2 by
framing the problem of singular noun phrase gener-
ation more precisdly. Thesequel extendsthisframe-
work with a forma account of plural interpreta
tion and generation. Section 3 introduces the two
independently-motivated observations from formal
semantics which form the basis of this account.

e TheASSIGNMENT-SET semanticsfor reference
to plurals providesaway to evoke and describe
collections with variables that range only over
individuals(van den Berg, 1993; van den Berg,
1996). By using the assignment-set semantics,
we can dispensewith explicit collectionsin for-
malizing an interpretation such as that schema-
tized in (4c); we represent only the individual s
involved.

e The CoVER semantics for predications about
plurdities provides a simple scheme of im-
plicit quantification to abstract collective and
distributive predication (Gillon, 1987; Verkuyl
and van der Does, 1991; Schwarzschild, 1994,
Schwarzschild, 1996). The cover semantics of-
fers an elegant, and convenient, definition of
what it meansfor theset distinguishedin (4c) to
be characterized asthe squaresclustered some-
where.

Section 4 presents the computational model of plu-
ral descriptions based on these principles. In keep-
ingwith (4), thismodel simply and naturally extends
the models used to generate singular references. In
particular, as (4) suggests, this model continues to
structure the search space for generation in terms of



thewordsthat can be added to the descriptionand to
arrive at corresponding interpretations by constraint
satisfaction over individuals. In so doing, the pro-
posal defusesthe potential combinatorial explosions
that might otherwise arise with reference to sets.

2 Background

At ahigh level, we can characterize generation pro-
cedureslikethat of (Dale and Haddock, 1991) or its
successors as manipulating linguistic data structures
that link together FORMS, MEANINGS and INTER-
PRETATIONS. (5) illustrates such a data structure,
as it might be entertained in identifying a uniquely
identifiable element of (2a).

(5) a F: /the square in the upper left/
b M: {square(x),in(x,r),upper-left(r)}

c I

(5a) proposestheform the squarein the upper left—
a syntactic structure represented to some degree of
abstraction. (5b) records the semantics for the de-
scription as a set of constraints—each constraint is
an atomic formula with free variables that speci-
fies the requirement that some lexical meaning con-
tributes to the description; the variables are place-
holders for the discourse entities that the descrip-
tion identifies. And (5c¢) anticipates how the hearer
could process the description, by outlining the pos-
sible candidate referents for it; in (5¢) we find the
element of the figure which x must represent, along
with the corresponding (vaguely delimited) region r
in the upper left where x islocated.

Any data structure linking form, meaning and
interpretation combines two kinds of information.
Form and meaning are related by the generator’'s
model of linguistic resources. In the concrete case,
this model is a grammar; LEXICAL semantics de-
termines the separate constraints that can go into a
description and COMPOSITIONAL Semantics deter-
mines how these constraints can share variablesand
so describe common objects. Meaning and interpre-
tation, meanwhile, arerelated by amode of the con-
textinwhichtheformistobeuttered. Ininterpreting
referring expressions, we appeal to a CONTEXT SET
enumerating the salient individualsat some pointin
the discourse and a COMMON GROUND listing the

instances of constraintsthat can be presumed to be
mutually known at that point. To determine the in-
terpretation from the meaning, we must instantiate
the free variables to individuals in the context set
and match theinstantiated constraints against the el -
ements of the common ground. In practice, con-
strai nt satisfaction heuristics (Mackworth, 1987) are
required to accomplish the process of instantiation
and matching with any hope of efficiency.

With an understanding of what data structures
such as (5) represent and how to carry out reasoning
over them, solving descriptive problems becomes a
matter of search. In practice, this search is typi-
cally managed quitesimply: for example, (Daeand
Haddock, 1991) select transitions among states ac-
cording to a greedy heuristic, while (Dae and Re-
iter, 1995) select alternatives by exploring differ-
ent kinds of constraints in a fixed order. In any
case, the search starts with a structure defining an
empty description, which means nothing and could
refer to anything. Structures are then extended and
considered in turn until the interpretation satisfies
the system’s goals (for example because it alows
only a specified value, the intended referent, for a
particular variable). The process of extension sim-
ply consists of deriving a more elaborate form with
a richer meaning using the generator’s linguistic
resources—it is useful to think of obtaining this by
carrying out a step of derivation in a lexicalized
grammar (Stone and Doran, 1997)—and then con-
sultingthe model of the context to obtain an updated
interpretation.

To extend these data structures to sets, we cannot
introduce set variables and maintain the aternative
candidateset val uesthosevariablesmight ultimately
refer to—for one thing, there are just too many sets
to represent an interpretation thisway.

3 Anintuition and some semantics

Hereisasuggestion: REINTERPRET data structures
like (5) as compatible with descriptions of collec-
tions as well as singletons. This should have some
intuitive appeal. After all, we always thought that
aform like (54) abstracted out details of syntax and
morphology; there's no difficulty then in seeing it
as short for a family of singular and plural expres-
sionslike/the square(s) inthe upper |eft/. Similarly,
theinterpretation is aready defined in terms of a set
of instancesthat satisfy the description; why not use
thisas THE set that the description refers to?

The problem is the meaning. We have to alow



for both DISTRIBUTIVE predicates, which character-
ize collectionsbased on propertiesof theindividuals
involved, and COLLECTIVE predicates, which de-
scribe collectionsthat jointly participatein some re-
lation. If we have collective predicates, how can we
get away without explicit set variables which could
take on any set as a possible value?

Van den Berg's treatment of dependent pluralsin
dynamic semantics provides thefirst half of the an-
swer (van den Berg, 1993; van den Berg, 1996). Van
den Berg's starting observation is that discourse can
set up and maintain dependencies between the indi-
vidua sin one set and theindividualsin another.

(6) a Every man lovesawoman.
b They provethisby giving them flowers.

In (6) for example, thefirst sentenceintroducesa set
of men and a set of women, where each man in the
one set is related to a woman in the other set (by
love); the second sentence builds on that relation-
ship, indicating another connection (of giving) be-
tween each man and the corresponding woman.

For van den Berg, data like (6) show that dis-
courses describe sets of CASES generally. Each case
involves a sequence of entities that stand in vari-
ous rel ationshipsto one another, sometimes directly
as individuas and sometimes indirectly through
their membership in larger, related groups. Some
sentences in discourse aggregate cases together, to
express relationships that hold collectively among
groups. Other sentences, like (6), zoom in on in-
dividual cases, and describe distributive properties
which hold of isolated individuals. In zoominginon
cases, rather than individual's, these sentences main-
tain and extend the dependencies and other relation-
shipsthat define a case.

The second half of the answer derives from
the observation, made in (Gillon, 1987; Verkuyl
and van der Does, 1991; Schwarzschild, 1994;
Schwarzschild, 1996), that the collective and dis-
tributive readings of plurals represent only the ex-
tremesin alarger space of readings. Take (7):

(7) Rogers, Hammerstein and Hart wrote
musicals.

This sentence is true, but only in virtue of the joint
action of Rogers and Hammerstein in writing some
musicals and the joint action of Rogers and Hart in
writing other musicals. Asamatter of fact, thethree
never wrote a musica individually or as a single

team, so boththe collective and distributivereadings
arefase.

We will follow Schwarzschild's proposal most
closely. Schwarzschild argues that we establish that
a linguistic predicate applies to a plural argument
by recovering a salient cover of that argument from
the context. A cover here means a set of plurai-
ties whose union or sum is the overall plura argu-
ment. Giventhecover, theoverall plural predication
holdsjust in case the basic property denoted by the
predicateistrue (collectively) of each of the sets (or
CELLS) in the cover. For example, the sets consist-
ing of Rogers and Hammerstein and of Rogers and
Hart form the salient cover of Roger, Hammerstein
and Hart in (7); the exampleis true because each of
thecellsinthiscover directly enjoysthe property of
having written amusical.

Schwarzschild's covering proposal and van den
Berg's assignment-set proposal are perfectly com-
patible. Following van den Berg, we interpret dis-
courses in terms of sets of cases, where these cases
spell out dependencies among related individuals.
But now, following Schwarzschild, we zoom in on
those cases flexibly, by covering them. Sometimes
we consider al the casestogether and describerela
tionships among aggregated groups; sometimes we
consider cases separately and describe individuals
distributively; and sometimes, asin (7), we take an
intermediate step and cluster the cases into some
salient subgroups.

Now let us return to (4c), repeated as (8a), and
consider informally what this proposal amounts to:
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The assignment-set cover semanticsfitsthe descrip-
tion to the figure thisway. Asin (5c), the figure
schematizes a set of cases; here each case involves
two entities, a square and the location of the cluster
towhich the square belongs. The descriptionapplies
because we can look at the individua cases to see
that we have squares, and we can group the casesto-
gether by region into acover so that in each cdll the
squares are indeed clustered at the location.

At this point, some formalism is required to pro-



ceed with the development. We'll use assignment
variables like g to range over cases; gy isthe vaue
of g for variable x.! Interpretations are defined in
terms of sets of cases, naturaly; we'll usel torange
over aset of cases and write ' (x) for {gx:ge}.
Most constraints will involve several variables; we
can abstract thisinterms of a sequenceof variablesx
and the tuple of collectionsthat those variables take
on across a set of cases, '(x). (We can define this
explicitly as(x) = G where Gy, =T (x;).)

Now, consider an atomic constraint F(x). In gen-
eral, F(x) will have multiple known instances, and
each instance will relate collections of individuals
to one another. Thus the common ground will asso-
ciateF (x) withaset of tuplesof sets, whichwewrite
as[[F(x)]]. Aninterpretation I will fit one of those
instances directly iff I (x) € [[F(x)]]. In thiscase we
say F(x) DESCRIBES I".

For example, consider the constraint
clustered(x,r). Let us say a set X is clustered
around Rif Risasingleton spatial location {r} and
X is a group of sufficient cardinality and density
located together at r. Then we might find three
tuples of [[clustered(x,r)] in the explicit depiction
of (8). If we define "y asin (9) then clustered(x,r)
describesl ;.

(9 {(xr):xasquareinthelower left regionr}

Of course, we are principally interested in the
ability to zoom in to particular cases, using covers.
We represent a cover using a reflexive binary rela
tion that links each assignment to any assignment
initscell. Given such arelation C, the constraint
©¢ p—read “covered by C, p"—saysthat p istrue
on each of the cells of the cover specified by C. We
will only consider the case where p isan atomic con-
straint F(x).

(10) (©c F(x) pescriBesT iffforal geT,
F(x) describes{h el :C(g,h)}.

Continuing from (9), define M, and I3 in (11a) and
(11b) respectively.

(1D)a {(x,r) : x asquarein the center top r}
b {(x,r):xasguarein thelower rightr}

1} adopt the notation throughout that v is a tuple and v; is
component i of v, where components may be indexed equiva-
lently by variables or numbers. Lower case Roman letters are
for ordinary individuals and tuples thereof; upper case Roman
letters are for sets of individuals and tuples thereof; upper case
Greek letters are for sets of tuples.

Then with C defined as in (12), ©)¢ clustered(x,r)
describesF UM UT 3.

(12) C= (Fl X Fl) U(F2 X rz) U(F3 X F3)

Observe the close connection between this formal
judgment and the informal discussion of (8) pre-
sented earlier. We have a set of cases involving a
sgquare and the location of the cluster to which the
sguare belongs; we cover the cases together by re-
gion and find that the resulting groups define a spec-
ified cluster at a specified location.

Schwarzschild’s proposal isthat the salient cover
C is supplied from context. In the case of definite
referencetotuplesl’, we can regard thetuplesin any
predicate as defining the appropriate salient cover
for plura predication; any tuples that help to iden-
tify I must be prominent parts of the shared context.
Meanings of referring expressions should therefore
apped to acondition (© p which describesT iff there
isaC for which © p describesT .

Clearly, if (© p describesl” and (©) p describes T’
then (© p describes T UT’. Thisin turn entails that
any condition (©) p describes amaximal set of cases
fromthe current context; the same goesfor any con-
junction of conditions of this form. We can treat
thisset of cases astheinterpretation of adescription.
In particular, consider a description L that consists
of alist of constraints © L;(x) formulated in terms
of a tuple of variables x and atomic conditions on
thosevariablesL;(x). Assumeacontext set D defin-
ingadomain of salientindividuals, so that candidate
casestointerpret L are givenby Y:={a:a € D}.
The development thus far leads us to define the IN-
TERPRETATION of L—I(L )—as:

(13) I(L):=maxrcyVi: ©Li(x) describes”

Drawing on our running discussion, we
can apply this definition to the description
L = {©square(x), ©clustered(x,r)} and the
context schematized by (28). Of course, we find
I(L) =T, Ul,uUl3. The fully distributive cover
shows that the square condition is satisfied; the
cover of (12) shows that the clustered condition
is satisfied. Meanwhile, no further cases can be
considered without adding either a circle or the
unclustered square.

The reader will already have recognized (L) =
M Ul Ul 3 asthe set of casesthat goes with (8a).
Thus, we have reconciled theinformal pictureof (4)
with the concrete data structures of form, meaning



and interpretation that NLG demands. For (8) we
can now read (14).

(1%a F: /the squares(s) clustered _ /

b m: {©square(x), © cluster(x,r)}
oo
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4 Computingreferring expressions

At this point, we have an understanding of what
kinds of representations we can use to describe the
derivation of plural referring expressions. But we
still must devise appropriate reasoning methods for
these representations. The problem is the subject of
this section.

4.1 Collective Constraints

Thefirst stepistoformul ate a constraint-sati sfaction
heuristic that accounts for cover-constraints on col-
lections. In general, constraint-satisfaction heuris-
tics provideatechniquefor approximating theinter-
pretation of adescription. Thekey notionisthat of a
CONSTRAINT NETWORK for adescription L, which
determines a tuple C of CONSTRAINED VALUES.
This tuple specifies a generous set of possible val-
uesC; for each variablex; inx; it isobtained by con-
servatively eliminating valuesthat are determined to
be inconsistent with L according to heuristic tests.
For example, the usual arc-consistency heuristic for
aconstraint over individuals K(x) isto eliminate a
vaue v for variable z unless some g € [[K(x)]] has
g, =Vvand gk € C for al k.

We will adapt thisto the case of cover constraints
with the following test of consistency. An individ-
ual value v for avariable x; maintains its member-
ship in C; in the presence of a collective constraint
©Lj(x) whenever v belongs to a SUBSET G; of C
which participatesdirectly intherel ation denoted by
L (x) with sets of possiblevaluesfor the other vari-
ables. This criterion is spelled out formally in the
definition in (15).

(15) Vauevfor variablex; is
COVER-CONSISTENT (C-CONSISTENT)
with constraint (©) L (x) under constrained
valuesC if thereisan G € [[Lj(x)] with
ve G and G C G for dl k.

All values of x; in G that are not c-consistent
with constraint ©L;(x) may be deleted from G,
as they will not satisfy the constraint. Doing so
makes C; ARC c-consistent with respect to © L(x),
and provides the basic step in a network-based arc-
consistency constraint-satisfier. As with ordinary
constraint satisfaction, we arrive at a final tuple of
values for x by starting with an initia tuple Cqy of
values—often an assignment Dy giving each vari-
ableD—and aqueueof arcslinking each C; with any
©L;(x) that constrainsit. Until the queueis empty,
we select an arc and enforce the arc c-consistency
by pruning G;; if C; changes we requeue al arcs
that might no longer be arc c-consistent after the
deletion. | will refer to the final tuple of values as
P(L; Cy), for the PLURAL constraint network on de-
scription L and domains Cy.

The properties of this algorithm are in line with
ordinary constraint satisfaction. The output will
not provide al and only solutionsto the constraints
without further assumptions about the constraints.
However, we can show, as usual, that the network
converges on consistent values for variablesin the
ordinary linguistic case where the constraint graph
is atree—a semantic property, that there are no dis-
joint sets of constraints that overlap on the same
two variables, that follows under plausible assump-
tions about the derivation of semantics from atree-
structured syntax. We can show further that these
values, together with the tuplesin [[Lj(x)] that cover
these values, determine precisely the collection of
assignments|(L).

4.2 Search for Referring Expressions

The second stepisto formalize the task of construct-
ing a description as a state-space search task. Sup-
pressing details of form for exposition, each stateis
atupleZ asset outin (16).

(16) =={(L,r,R,x,P(L;R,Dx),P(L;Dr,Dx))
The state represents:

(17)a adescriptionL;

b atupler of distinguishedfree variablesin
the description for which we must identify
specific intended values;

¢ atupleR of setsdescribing the value R,
which weintend for the corresponding
variabler;;

d theremaining free variables of the
description x;



e aconstraint network P(L; R, Dx) describing
thevaluesfor al thefree variablesin the
description, on the assumption that the
distinguished variables take on the valueswe
intend; and

f aconstraint network P(L ; Dr,Dx)
describing the valuesfor all the free
variablesin the description, on the
assumption that the distinguished variables
may, like other variables, take on any values
from the context set.

The distinction between the variables whose in-
tended referenceisfixed and thosefor whichitisde-
rived as a byproduct of the search processis dueto
Horacek (Horacek, 1995; Horacek, 1996); the dis-
tinction derivesincreased importance when relating
one collectionto another asthe choiceof collections
need not giverise to explicit branching in search.

Theinitia stateinvolvesan empty descriptionand
so has the form given in (18).

(18) z= <®,I’, R, <>7 P(®; R)v P(®; DI’)>

A state such as (16) represents a final state that suc-
cessfully resolves the generation task when each
variable x from r and x is associated with the same
set C, in both P(L;R,Dx) and P(L;Dr,Dx). This
simply means that the hearer’s interpretation of the
referring expression matches the spesker’sintended
interpretation.

At any state Z, the grammar defines a set of con-
straintsof theform (© L(rx;y) that could potentially
be added to the description to obtain L'—L is some
domain relation, r and x name the old variables
from L while y names fresh variables. Of course,
we want to restrict our attention to constraints that
are compatible with our intended interpretation. To
achieve this restriction, we begin by computing the
new constraint network C' = P(L";R,Dxy). We
check, whenever R assignsavaluetox, that Ry C Cl..
If thistest admits the new constraint, the new state
obtained from state 2 is computed asin (19).

(19) <L,7r7R7Xy7 P(L,1Rany)aF)(L,yDrany»

4.3 An Example

| return to (1) to provide an illustration of the final
scheme; thegoal isto identify the segmentsin (20f),
R, from among thosein (20&). | use figures and ref-
erences to figures, in place of constraint networks;
the description uses the variable r. The states pro-
ceed, perhaps, thus:

(20)a
b (o,r,R (), (20a),(20f))
¢ {({©segment(r)},r.R (), (208), (20f))

, ©intersecting(r) },
(20f))

d

e ({©segment(r)
rR (), (20d),

f

g ({©segment(r), ©intersecting(r),
©dotted(r)},r,R, (), (20f), (20f))

5 Closing thoughts

Descriptions of sets obviously have much in com-
mon with expressions that describe a single entity
from the shared context. In particular, adopting the
standard view of NL G as goal-directed activity (Ap-
pelt, 1985; Dae, 1992; Moore, 1994; Moore and
Paris, 1993), singular and plura descriptions agree
both in the kinds of intentionsthat they can achieve
and the stages of generation at which they can befor-
mulated. We cannot expect asingleprocessto bere-
sponsiblefor set descriptionsacrossall intentionsor
stages of NLG.

For example, as with a singular description, a
description of a set may appeal to properties that
play arole in the argument the speaker is trying to
make, and may therefore address goals above and
beyond simple identification of discourse entities.
(See (Dondlan, 1966; Kronfeld, 1986) on the dis-
tinction.) (Green et a., 1998a; Green et a ., 1998b)
show how such descriptionsmay be represented and
formulated in NLG at a high-level process of con-
tent or rhetorical planning. At the same time, plu-
rals and singulars are alike in offering resources for
reference—such as pronouns, one-anaphora or ag-
gregated expressions—that bypass explicit descrip-
tion altogether. The use of these resources may be
quite closely dependent on the surface form being
generated and so could reflect arelatively late deci-
sion in the generation process (Dale and Haddock,



1991; Reiter, 1994; Dalianis, 1996).

These complexities notwithstanding, we can ex-
pect many descriptions of sets, like descriptions
of individuals, to be formulated from scratch to
achieve purely referential goals during the SEN-
TENCE PLANNING phase of NLG, between con-
tent planning and surface realization (Rambow and
Korelsky, 1992; Reiter, 1994). | have shown that
using covers to abstract collective and distributive
readings—and using sets of assignments to repre-
sent plura references—yields a search space for
this problem which largely mirrors that for singu-
lars, and which avoids computation and search over
sets of collections. Although sets proliferate explo-
sively, it isno surprisethat the search space for plu-
ras set up by (19) is, like that for singulars, ulti-
mately defined by the sequences of eements that
make up descriptions. NLG involves search to use
words effectively—choices of words should be the
only decisionsareferring expression generation sys-
tem hasto make.
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